Какое устройство компьютера осуществляет процесс дискредитации звука. Кодирование звуковой информации

| Планирование уроков и материалы к урокам | 10 классы | Планирование уроков на учебный год | Представление текста, изображения и звука в компьютере (§ 6)

Уроки 10 - 12
Представление текста, изображения и звука в компьютере (§ 6)

Звуковая информация

Звуковая информация

Принципы дискретизации звука («оцифровки» звука) отражены на рис. 1.11.

Ввод звука в компьютер производится с помощью звукового устройства (микрофона, радио и др.), выход которого подключается к порту звуковой карты . Задача звуковой карты - с определенной частотой производить измерения уровня звукового сигнала (преобразованного в электрические колебания) и результаты измерения записывать в память компьютера. Этот процесс называют оцифровкой звука.

Промежуток времени между двумя измерениями называется периодом измерений - τ с. Обратная величина называется частотой дискретизации - 1/τ (герц). Чем выше частота измерений, тем выше качество цифрового звука.

Результаты таких измерений представляются целыми положительными числами с конечным количеством разрядов. Вы уже знаете, что в таком случае получается дискретное конечное множество значений в ограниченном диапазоне. Размер этого диапазона зависит от разрядности ячейки - регистра памяти звуковой карты. Снова работает формула 2 i , где i - разрядность регистра. Число i называют также разрядностью дискретизации. Записанные данные сохраняются в файлах специальных звуковых форматов.

Существуют программы обработки звука - редакторы звука, позволяющие создавать различные музыкальные эффекты, очищать звук от шумов, согласовывать с изображениями для создания мультимедийных продуктов и т. д. С помощью специальных устройств, генерирующих звук, звуковые файлы могут преобразовываться в звуковые волны, воспринимаемые слухом человека.

При хранении оцифрованного звука приходится решать проблему уменьшения объема звуковых файлов. Для этого кроме кодирования данных без потерь, позволяющего осуществлять стопроцентное восстановление данных из сжатого потока, используется кодирование данных с потерями. Цель такого кодирования - добиться схожести звучания восстановленного сигнала с оригиналом при максимальном сжатии данных. Это достигается путем использования различных алгоритмов, сжимающих оригинальный сигнал путем выкидывания из него слабослышимых элементов. Методов сжатия, а также программ, реализующих эти методы, существует много.

Для сохранения звука без потерь используется универсальный звуковой формат файлов WAV. Наиболее известный формат «сжатого» звука (с потерями) - MP3. Он обеспечивает сжатие данных в 10 раз и более.


Вопросы и задания

1. Когда компьютеры начали работать с текстом, с графикой, со звуком?
2. Что такое таблица кодировки? Какие существуют таблицы кодировки?
3. На чем основывается дискретное представление изображения?
4. Что такое модель цвета RGB?
5. Напишите 8-разрядный код ярко-синего цвета, ярко-желтого (смесь красного с зеленым), бледно-желтого.
6. Почему в полиграфии не используется модель RGB?
7. Что такое CMYK?
8. Какое устройство в компьютере производит оцифровку вводимого звукового сигнала?
9. Как (качественно) качество цифрового звука зависит от частоты дискретизации и разрядности дискретизации?
10. Чем удобен формат MP3?

Следующая страница

Звуковые устройства становятся неотъемлемой частью каждого персонального компьютера. В процессе конкурентной борьбы был выработан универсальный, широко поддерживаемый стандарт звукового программного и аппаратного обеспечения. Звуковые устройства превратились из дорогих экзотических дополнений в привычную часть системы практически любой конфигурации.

В современных компьютерах аппаратная поддержка звука реализуется в одной из следующих форм:

  • аудиоадаптер, помещаемый в разъем шины PCI или ISA;
  • микросхема на системной плате, выпускаемая компаниями Crystal, Analog Devices, Sigmatel, ESS и др.;
  • звуковые устройства, интегрированные в базовый набор микросхем системной платы, к которым относятся наиболее современные наборы микросхем компаний Intel, SiS и VIA Technologies, созданные для недорогих компьютеров.

Кроме основного аудиоустройства, существует еще множество дополнительных аудиоустройств: акустические системы, микрофон и др. В данной главе рассматриваются функциональность и особенности работы всех компонентов аудиосистемы компьютера.

Первые звуковые платы появились в конце 1980-х гг. на базе разработок компаний AdLib, Roland и Creative Labs и использовались только для игр. В 1989 г. компания Creative Labs выпустила стереозвуковую плату Game Blaster; позднее появилась плата Sound Blaster Pro.

Для стабильного функционирования платы требовались определенные программные (MS DOS, Windows) и аппаратные ресурсы (IRQ, DMA и адреса порта ввода-вывода).

В связи с проблемами, возникающими в процессе применения звуковых плат, не совместимых с системой Sound Blaster Pro, в декабре 1995 г. появилась новая разработка компании Microsoft - DirectX, которая представляет собой серию программируемых интерфейсов приложения (Application Program Interfaces - API) для непосредственного взаимодействия с устройствами аппаратного обеспечения.

Сегодня практически каждый компьютер оснащен звуковым адаптером того или иного типа и устройством CD-ROM или

CD-ROM-совместимым дисководом. После принятия стандартов МРС-1-МРС-3, определяющих классификацию компьютеров, системы, оборудованные звуковой платой и CD-ROM-совместимым накопителем, получили название мультимедийных компьютеров (Multimedia PC). Первый стандарт МРС-1 был представлен в 1990 г.; стандарт МРС-3, сменивший его в июне 1995 г., определил следующие минимальные требования к аппаратному и программному обеспечению:

  • процессор - Pentium, 75 МГц;
  • оперативная память - 8 Мб;
  • жесткий диск - 540 Мб;
  • дисковод CD-ROM - четырехскоростной (4х);
  • разрешающая способность VGA - 640 х 480;
  • глубина цвета - 65 536 цветов (16-битовый цвет);
  • минимальная операционная система - Windows 3.1.

Любые компьютеры, созданные после 1996 г., содержащие

звуковой адаптер и CD-ROM-совместимый дисковод, полностью удовлетворяют требованиям стандарта МРС-3.

В настоящее время критерии принадлежности компьютера к классу мультимедийных несколько изменились в связи с техническими достижениями в этой области:

  • процессор - Pentium III, Celeron, Athlon, Duron или какой-либо другой процессор класса Pentium, 600 МГц;
  • оперативная память - 64 Мб;
  • жесткий диск - 3,2 Гб;
  • гибкий диск - 1,44 Мб (3,5" диск с высокой плотностью размещения данных);
  • дисковод CD-ROM - 24-скоростной (24х);
  • звуковая частота дискретизации - 16-разрядная;
  • разрешающая способность VGA - 1024 х 768;
  • глубина цвета - 16,8 млн цветов (24-битовый цвет);
  • устройства ввода-вывода - параллельный, последовательный, MIDI, игровой порт;
  • минимальная операционная система - Windows 98 или Windows Me.

Несмотря на то, что звуковые колонки или наушники технически не являются частью МРС-спецификации или приведенного выше перечня, они необходимы для воспроизведения звука. Кроме того, для ввода голосовой информации, используемой для записи звука или речевого управления компьютером, требуется микрофон. Системы, оснащенные звуковым адаптером, обычно содержат также недорогие пассивные или активные колонки (могут быть заменены наушниками, обеспечивающими требуемое качество и частотные характеристики воспроизводимого звука).

Мультимедийный компьютер, оснащенный колонками и микрофоном, обладает рядом возможностей и обеспечивает:

  • добавление стереозвука к развлекательным (игровым) программам;
  • увеличение эффективности образовательных программ (для маленьких детей);
  • добавление звуковых эффектов в демонстрационные и обучающие программы;
  • создание музыки с помощью аппаратных и программных средств MIDI;
  • добавление в файлы звуковых комментариев;
  • реализацию звуковых сетевых конференций;
  • добавление звуковых эффектов к событиям операционной системы;
  • звуковое воспроизведение текста;
  • проигрывание аудиокомпакт-дисков;
  • проигрывание файлов формата.mp3;
  • проигрывание видеоклипов;
  • воспроизведение DVD-фильмов;
  • поддержку управления голосом.

Компоненты аудиосистемы. При выборе аудиосистемы необходимо учитывать параметры ее компонентов.

Разъемы звуковых плат. Большинство звуковых плат имеет одинаковые миниатюрные (1/8") разъемы, с помощью которых сигналы подаются с платы на акустические системы, наушники и входы стереосистемы; к аналогичным разъемам подключается микрофон, проигрыватель компакт-дисков и магнитофон. На рис. 5.4 показаны четыре типа разъемов, которые как минимум должны быть установлены на звуковой плате. Цветовые обозначения разъемов каждого типа определены в руководстве РС99 Design Guide и варьируются для различных звуковых адаптеров.

Рис. 5.4.

Перечислим наиболее распространенные разъемы:

  • линейный выход платы. Сигнал с этого разъема подается на внешние устройства - акустические системы, наушники или на вход стереоусилителя, с помощью которого сигнал усиливают до требуемого уровня;
  • линейный вход платы. Используется при микшировании или записи звукового сигнала, поступающего от внешней аудиосистемы на жесткий диск;
  • разъем для акустической системы и наушников. Присутствует не во всех платах. Сигналы на акустические системы подаются с того же разъема (линейного выхода), что и на вход стереоусилителя;
  • микрофонный вход, или вход монофонического сигнала. Применяется для подключения микрофона. Запись с микрофона является монофонической. Уровень входного сигнала при этом поддерживается постоянным и оптимальным для преобразования. Для записи лучше всего использовать электродинамический или конденсаторный микрофон, рассчитанный на сопротивление нагрузки от 600 Ом до 10 кОм. В некоторых дешевых звуковых платах микрофон подключается к линейному входу;
  • разъем для джойстика (MIDI-порт). Представляет собой 15-контактный D-образный разъем. Два его контакта можно использовать для управления устройством MIDI, например клавишным синтезатором. В этом случае необходимо приобрести Y-образный кабель;
  • разъем MIDI. Включается в порт джойстика, имеет два круглых 5-контактных разъема DIN, используемых для подключения устройств MIDI, а также разъем для джойстика;
  • внутренний контактный разъем - специальный разъем для подключения к внутреннему накопителю CD-ROM. Позволяет воспроизводить звук с компакт-дисков через акустические системы, подключенные к звуковой плате. Этот разъем отличается от разъема для подключения контроллера CD-ROM к звуковой плате, так как данные по нему не передаются на шину компьютера.

Дополнительные разъемы. Большинство современных звуковых адаптеров поддерживает возможности воспроизведения DVD, обработки звука и т. д., а следовательно, имеет несколько дополнительных разъемов, особенности которых приведены ниже:

  • вход и выход MIDI. Такой разъем, не совмещенный с игровым портом, позволяет одновременно использовать как джойстик, так и внешние устройства MIDI;
  • вход и выход SPDIF (Sony/Philips Digital Interface - SP/DIF). Разъем используется для передачи цифровых аудиосигналов между устройствами без их преобразования к аналоговому виду. Интерфейс SPDIF иногда называют Dolby Digital;
  • CD SPDIF. Разъем предназначен для подключения накопителя CD-ROM к звуковой плате с помощью интерфейса SPDIF;
  • вход TAD. Разъем для подключения модемов с поддержкой автоответчика (Telephone Answering Device) к звуковой плате;
  • цифровой выход DIN. Разъем предназначен для подключения многоканальных цифровых акустических систем;
  • вход Аих. Обеспечивает подключение к звуковой карте других источников сигнала, например ТВ-тюнера;
  • вход I2S. Позволяет подключать к звуковой карте цифровой выход внешних источников, например DVD.

Дополнительные разъемы обычно располагаются непосредственно на звуковой плате или подсоединяются к внешнему блоку или дочерней плате. Например, Sound Blaster Live! Platinum 5.1 представляет собой устройство, состоящее из двух частей. Сам звуковой адаптер подключается посредством разъема PCI, а дополнительные соединители - к внешнему коммутационному блоку LiveDrive IR, который устанавливается в неиспользуемый отсек дисковода.

Управление громкостью. В некоторых звуковых платах предусмотрено ручное регулирование громкости; на более сложных платах управление громкостью осуществляется программно с помощью комбинаций клавиш, непосредственно в процессе игры в системе Windows или в каком-либо приложении.

Синтезаторы. В настоящее время все выпускаемые платы являются стереофоническими, поддерживающими стандарт MIDI.

Стереофонические звуковые платы одновременно воспроизводят (и записывают) несколько сигналов от двух различных источников. Чем больше сигналов предусмотрено в адаптере, тем натуральнее звук. Каждая расположенная на плате микросхема синтезатора, чаще всего компании Yamaha, позволяет получить 11 (микросхема YM3812 или OPL2) сигналов или более. Для имитации более 20 сигналов (микросхема YMF262 или OPL3) устанавливается одна либо две микросхемы частотных синтезаторов.

В таблично-волновых звуковых платах вместо синтезированных звуков, генерируемых микросхемой частотной модуляции, используются цифровые записи реальных инструментов и звуковых эффектов. Например, при воспроизведении таким аудиоадаптером звука трубы слышится непосредственно звук трубы, а не его имитация. Первые звуковые платы, поддерживающие эту функцию, содержали до 1 Мб звуковых фрагментов, хранящихся в микросхемах памяти адаптера. Но в результате появления высокоскоростной шины PCI и увеличения объема оперативной памяти компьютеров в большинстве звуковых плат в настоящее время используется так называемый программируемый таблично-волновой метод, позволяющий загружать в оперативную память компьютера 2-8 Мб коротких звуковых фрагментов различных музыкальных инструментов.

В современных компьютерных играх MIDI-звук практически не используется, но, несмотря на это, изменения, произведенные в звуковой плате DirectX 8, делают его приемлемым вариантом для игровых фонограмм.

Сжатие данных. В большинстве плат качество звучания соответствует качеству компакт-дисков с частотой дискретизации

44,1 кГц, когда на каждую минуту звучания при записи даже обычного голоса расходуется около 11 Мб дискового пространства. Для того чтобы уменьшить размеры звуковых файлов, во многих платах используется сжатие данных. Например, в плате Sound Blaster ASP 16 сжатие звука осуществляется в реальном времени (непосредственно при записи) со степенью сжатия 2:1, 3: 1 или 4:1.

Поскольку для хранения звукового сигнала необходим большой объем дискового пространства, выполняется его сжатие методом адаптивной дифференциальной импульсно-кодовой модуляции (Adaptive Differential Pulse Code Modulation - ADPCM), что позволяет уменьшить размер файла примерно на 50 %. Правда, при этом ухудшается качество звука.

Многофункциональные сигнальные процессоры. Во многих звуковых платах используются процессоры цифровой обработки сигналов (Digital Signal Processor - DSP). Благодаря им платы стали более «интеллектуальными» и освободили центральный процессор компьютера от выполнения таких трудоемких задач, как очистка сигналов от шума и сжатие данных в режиме реального времени.

Процессоры устанавливаются во многих универсальных звуковых платах. Например, программируемый процессор цифровой обработки сигналов EMU10K1 платы Sound Blaster Live! сжимает данные, преобразует текст в речь и синтезирует так называемое трехмерное звучание, создавая эффект отражения звука и хорового сопровождения. При наличии такого процессора звуковая плата превращается в многофункциональное устройство. Например, в коммуникационной плате WindSurfer компании IBM цифровой процессор выполняет функции модема, факса и цифрового автоответчика.

Драйверы звуковых плат. С большинством плат поставляются универсальные драйверы для DOS- и Windows-приложений. В операционных системах Windows 9х и Windows NT уже существуют драйверы для популярных звуковых плат; драйверы для других плат можно приобрести отдельно.

Приложения DOS обычно не имеют широкого выбора драйверов, но компьютерные игры поддерживают адаптеры Sound Blaster Pro.

В последнее время требования к звуковым устройствам существенно возросли, что обусловило в свою очередь повышение мощности аппаратных средств. Современное унифицированное мультимедийное аппаратное обеспечение не может в полной мере считаться совершенной мультимедийной системой, характеризующейся следующими особенностями:

  • реалистичный объемный звук в компьютерных играх;
  • высококачественный звук в DVD-фильмах;
  • распознавание речи и голосовое управление;
  • создание и запись звуковых файлов форматов MIDI, MP3, WAV и CD-Audio.

Дополнительные требования к аппаратному и программному обеспечению, необходимые для достижения вышеперечисленных характеристик, представлены в табл. 5.3.

Таблица 5.3. Дополнительные возможности и свойства звуковых адаптеров

Назначение

Необходимые

возможности

Дополнительное аппаратное обеспечение

Дополнительное программное обеспечение

Игровой порт; трехмерный звук; аудиоускорение

Игровой контроллер; задние колонки

Фильмы формата DVD

Декодирование Dolby 5.1

Колонки с аудиоадаптером, совместимые с Dolby 5.1

Программа декодирования файлов MPEG

Программно-совместимый аудиоадаптер

Микрофон

Программное обеспечение, позволяющее диктовать тексты

Создание файлов MIDI

Аудиоадаптер с MIDI-входом

MIDI-совместимая

музыкальная

клавиатура

Программа для создания MIDI-файлов

Создание файлов MP3

Оцифровка звуковых файлов

Дисковод CD-R или CD-RW

Программа для создания МРЗ-файлов

Создание файлов WAV

Микрофон

Программа звукозаписи

Создание файлов CDAudio

Внешний источник звука

Программа преобразования файлов WAV или MP3 в CD-Audio

Минимальные требования, предъявляемые к звуковым платам.

Замена прежнего аудиоадаптера Sound Blaster Pro стандарта ISA звуковой платой PCI позволила значительно улучшить рабочие характеристики системы, однако целесообразно использовать все возможности звуковых плат, к которым в частности относятся:

  • поддержка трехмерного звука, реализованная в наборе микросхем. Выражение «трехмерный звук» означает, что звуки, соответствующие происходящему на экране, раздаются дальше или ближе, за спиной или где-то в стороне. Интерфейс Microsoft DirectX 8.0 включает поддержку трехмерного звука, однако для этого лучше использовать аудиоадаптер с аппаратно встроенной поддержкой трехмерного звука;
  • использование интерфейса DirectX 8.0 наряду с другими интерфейсами API трехмерного звука, к которым относятся, например, ЕАХ компании Creative, 3D Positional Audio компании Sensaura и технология A3D ныне не существующей компании Aureal;
  • ЗО-звуковое ускорение. Звуковые платы с наборами микросхем, поддерживающими эту возможность, имеют достаточно низкий коэффициент загрузки процессора, что приводит к общему увеличению скорости игр. Для получения наилучших результатов следует воспользоваться наборами микросхем, поддерживающими ускорение наибольшего числа 3D-потоков; в противном случае обработка трехмерного звука центральным процессором будет затруднена, что в конечном счете скажется на скорости игры;
  • игровые порты, поддерживающие игровые контроллеры с силовой обратной связью.

Сегодня существует множество звуковых плат среднего уровня, поддерживающих как минимум две из перечисленных функций. При этом розничная цена аудиоадаптеров не превышает 50-100 долл. Новые наборы микросхем трехмерного звука, поставляемые различными производителями, позволяют любителям компьютерных 3D-игр модернизировать систему в соответствии со своими пожеланиями.

Фильмы в формате DVD на экране компьютера. Для просмотра фильмов в формате DVD на компьютере необходимы следующие компоненты:

  • программное обеспечение для воспроизведения цифровых дисков, поддерживающее выход Dolby Digital 5.1. Одним из наиболее приемлемых вариантов является программа PowerDVD;
  • аудиоадаптер, поддерживающий входной сигнал Dolby Digital дисковода DVD и выводящий данные на Dolby Digital 5.1-совместимые звуковые аппаратные устройства. При отсутствии соответствующего аппаратного обеспечения вход Dolby 5.1 настраивается для работы с четырьмя колонками; кроме того, можно добавить вход S/PDIF ACS (Dolby Surround), предназначенный для четырехколоночных акустических систем;
  • Dolby Digital 5.1-совместимые приемник и колонки. Большинство высококачественных звуковых плат, поддерживающих систему Dolby Digital 5.1, соединены со специальным аналого-входным приемником, но ряд других, например, звуковые платы серии Creative Labs Sound Blaster Live! Platinum, поддерживают и акустические системы с цифровым входом, добавляя к плате дополнительный разъем Digital DIN.

Распознавание речи. Технология распознавания речи пока несовершенна, но уже сегодня существуют программы, позволяющие отдавать компьютеру команды голосом, вызывать нужные приложения, открывать файлы и необходимые диалоговые окна и даже диктовать ему тексты, которые раньше пришлось бы набирать.

Для типичного пользователя приложения этого типа бесполезны. Так, компания Compaq некоторое время поставляла компьютеры с микрофоном и приложением для голосового управления, причем стоило приложение очень дешево. Наблюдать за множеством пользователей в офисе, говорящих с компьютерами, было, конечно, интересно, но производительность фактически не увеличилась, зато много времени было потрачено впустую, поскольку пользователи были вынуждены экспериментировать с программным обеспечением, а кроме того, в офисе стало очень шумно.

Однако для пользователей с ограниченными возможностями по здоровью программное обеспечение этого типа может представлять определенный интерес, поэтому технология распознавания речи непрерывно развивается.

Как уже было сказано выше, существует еще один тип программного обеспечения распознавания речи, которое позволяет преобразовывать речь в текст. Это необычайно трудная задача, прежде всего из-за различий в речевых моделях разных людей, поэтому почти все программное обеспечение, в том числе некоторые приложения для подачи команд голосом, предусматривают этап «обучения» технологии распознавания голоса конкретного пользователя. В процессе такого обучения пользователь читает текст (или слова), бегущий на экране компьютера. Поскольку текст запрограммирован, компьютер быстро адаптируется к манере речи говорящего.

В результате проведенных экспериментов оказалось, что качество распознавания зависит от индивидуальных особенностей речи. Кроме того, некоторые пользователи способны диктовать целые страницы текста без прикосновений к клавиатуре, в то время как другие от этого утомляются.

Существует множество параметров, влияющих на качество распознавания речи. Перечислим основные из них:

  • программы распознавания дискретной и слитной речи. Слитная (или связная) речь, позволяющая вести более естественный «диалог» с компьютером, в настоящее время является стандартной, но, с другой стороны, есть ряд неразрешимых пока проблем в достижении приемлемой точности распознавания;
  • обучаемые и необучаемые программы. «Обучение» программы для корректного распознавания речи дает хорошие результаты даже в тех приложениях, которые позволяют пропустить этот этап;
  • большие активные и общие словари. Программы с большим активным словарем значительно быстрее реагируют на устную речь, а программы, имеющие больший общий словарь, позволяют сохранить уникальный запас слов;
  • производительность аппаратного обеспечения компьютера. Увеличение быстродействия процессоров и объема оперативной памяти приводит к ощутимому повышению скорости и точности программ распознавания речи, а также позволяет разработчикам вводить дополнительные возможности в новые версии приложений;
  • высококачественная звуковая плата и микрофон: наушники со встроенным микрофоном предназначены не для записи музыки или звуковых эффектов, а именно для распознавания речи.

Звуковые файлы. Для хранения аудиозаписей на персональном компьютере существуют файлы двух основных типов. В файлах первого типа, называемых обычными звуковыми файлами, используются форматы.wav, .voc, .au и.aiff. Звуковой файл содержит данные о форме волны, т. е. представляет собой запись аналоговых аудиосигналов в цифровой форме, пригодной для хранения на компьютере. Определены три уровня качества записи звуков, применяемых в операционных системах Windows 9х и Windows Me, а также уровень качества записи звука с характеристиками 48 кГц, 16-разрядный стерео и 188 Кб/с. Этот уровень предназначен для поддержки воспроизведения звука из таких источников, как DVD и Dolby АС-3.

Для достижения компромисса между высоким качеством звука и малым размером файла можно преобразовать файлы формата.wav в формат.mp3.

Сжатие аудиоданных. Существует две основные области, в которых применяется сжатие звука:

  • использование звуковых фрагментов на веб-узлах;
  • уменьшение объема высококачественных музыкальных файлов.

Специальные программы редактирования звуковых файлов, в частности, RealProducer компании Real или Microsoft Windows Media Encoder 7, позволяют уменьшать объем звуковых фрагментов при минимальной потере качества.

Самый популярный формат звуковых файлов - .mp3. Качество этих файлов приближается к качеству звучания компакт-диска, а по размеру они намного меньше обычных файлов.wav. Так, звуковой файл продолжительностью звучания 5 мин формата.wav с качеством компакт-диска имеет размер около 50 Мб, в то время как тот же звуковой файл формата.mp3 - около 4 Мб.

Единственным недостатком файлов формата.mp3 является отсутствие защиты от несанкционированного использования, т. е. любой желающий может свободно загрузить такой файл из Интернета (благо веб-узлов, предлагающих эти «пиратские» записи, существует великое множество). Описываемый формат файлов, несмотря на недостатки, получил довольно широкое распространение и обусловил массовое производство трЗ-плееров.

Файлы MIDI. Звуковой файл формата MIDI отличается от формата.wav так же, как векторный рисунок от растра. Файлы MIDI имеют расширение.mid или.rmi и являются полностью цифровыми, содержащими не запись звука, а команды, используемые аудиооборудованием для его создания. Подобно тому как по командам видеоадаптеры создают изображения трехмерных объектов, звуковые платы MIDI работают с файлами MIDI, чтобы синтезировать музыку.

MIDI - мощный язык программирования, который получил распространение в 1980-е гг. и разработан специально для электронных музыкальных инструментов. Стандарт MIDI стал новым словом в области электронной музыки. С помощью MIDI можно создавать, записывать, редактировать и воспроизводить музыкальные файлы на персональном компьютере или на MIDI-co- вместимом электронном музыкальном инструменте, подключенном к компьютеру.

Файлы MIDI в отличие от других типов звуковых файлов требуют относительно небольшого объема дискового пространства. Для записи 1 ч стереомузыки, хранимой в формате MIDI, требуется менее 500 Кбайт. Во многих играх используется запись звуков в формате MIDI, а не записи дискретизированного аналогового сигнала.

Файл MIDI - фактически цифровое отображение музыкальной партитуры, составленное из нескольких выделенных каналов, каждый из которых представляет различный музыкальный документ или тип звука. В каждом канале определены частоты и продолжительность звучания нот: в результате файл MIDI, например, для струнного квартета, содержит четыре канала, которые представляют две скрипки, альт и виолончель.

Все три спецификации МРС, а также РС9х предусматривают поддержку формата MIDI во всех звуковых платах. Стандарт General MIDI для большинства звуковых плат предусматривает до 16 каналов в единственном файле MIDI, но это не обязательно ограничивает звук 16 инструментами. Один канал способен представлять звук группы инструментов; поэтому можно синтезировать полный оркестр.

Поскольку файл MIDI состоит из цифровых команд, редактировать его намного легче, чем звуковой файл типа.wav. Соответствующее программное обеспечение позволяет выбирать любой канал MIDI, записывать ноты, а также добавлять эффекты. Определенные пакеты программ предназначены для записи музыки в файле MIDI, используя стандартную музыкальную систему обозначений. В результате композитор пишет музыку непосредственно на компьютере, редактирует ее при необходимости, а затем распечатывает ноты для исполнителей. Это очень удобно для профессиональных музыкантов, которые вынуждены тратить много времени на переписывание нот.

Проигрывание файлов MIDI. Запуск файла MIDI на персональном компьютере не означает воспроизведение записи. Компьютер фактически создает музыку по записанным командам: система читает файл MIDI, синтезатор генерирует звуки для каждого канала в соответствии с командами в файле, для того чтобы придать нужный тон и длительность звучанию нот. Для получения звука определенного музыкального инструмента синтезатор использует предопределенный образец, т. е. набор команд, с помощью которых создается звук, подобный воспроизводимому конкретным инструментом.

Синтезатор на звуковой плате подобен электронному клавишному синтезатору, но с ограниченными возможностями. В соответствии со спецификацией МРС звуковая плата должна иметь частотный синтезатор, который может одновременно проиграть по крайней мере шесть мелодичных нот и две ударные.

Частотный синтез. Большинство звуковых плат генерирует звуки с помощью частотного синтезатора; эта технология была разработана еще в 1976 г. Используя одну синусоидальную волну для изменения другой, частотный синтезатор создает искусственный звук, который напоминает звучание определенного инструмента. В стандарте MIDI определен набор предварительно запрограммированных звуков, которые можно проиграть с помощью большинства инструментов.

В некоторых частотных синтезаторах используются четыре волны, и воспроизводимые звуки имеют вполне нормальное, хотя и несколько искусственное звучание. Например, синтезируемый звук трубы, несомненно, подобен ее звучанию, но никто и никогда не признает его звуком настоящей трубы.

Таблично-волновой синтез. Особенность частотного синтеза состоит в том, что воспроизводимый звук даже в лучшем случае не полностью совпадает с реальным звучанием музыкального инструмента. Недорогая технология более естественного звучания была разработана корпорацией Ensoniq в 1984 г. Она предусматривает запись звучания любого инструмента (включая фортепьяно, скрипку, гитару, флейту, трубу и барабан) и сохранение оцифрованного звука в специальной таблице. Эта таблица записывается или в микросхемы ROM или на диск, а звуковая плата может извлекать из таблицы оцифрованный звук нужного инструмента.

С помощью таблично-волнового синтезатора можно выбрать инструмент, заставить звучать единственно нужную ноту и при необходимости изменить ее частоту (т. е. воспроизвести заданную ноту из соответствующей октавы). В некоторых адаптерах для улучшения воспроизведения звука используется несколько образцов звучания одного и того же инструмента. Самая высокая нота на фортепьяно отличается от самой низкой высотой тона, поэтому для более естественного звучания нужно выбрать образец, наиболее близкий (по высоте тона) к синтезируемой ноте.

Таким образом, от размера таблицы в значительной степени зависит качество и разнообразие звуков, которые способен воспроизводить синтезатор. Лучшие качественные таблично-волновые адаптеры обычно имеют на плате память объемом в несколько мегабайт для хранения образцов. В некоторых из них предусмотрена возможность подключения дополнительных плат для установки дополнительной памяти и записи образцов звуков в таблицу.

Подключение других устройств к разъему MIDI. Интерфейс MIDI звуковой платы применяется также для подключения электронных инструментов, генераторов звуков, барабанов и других устройств MIDI к компьютеру. В результате файлы MIDI воспроизводит высококачественный музыкальный синтезатор, а не синтезатор звуковой платы, кроме того, можно создавать собственные файлы MIDI, проигрывая ноты на специальной клавиатуре. Правильно подобранное программное обеспечение позволит сочинить симфонию на компьютере типа PC с помощью записи нот каждого инструмента отдельно в собственный канал, а затем разрешить одновременное звучание всех каналов. Многие профессиональные музыканты и композиторы используют устройства MIDI для сочинения музыки прямо на компьютерах, т. е. обходясь без традиционных инструментов.

Существуют также платы MIDI с высоким качеством звучания, которые работают в двунаправленном режиме, т. е. воспроизводят предварительно записанные звуковые дорожки во время записи новой дорожки в тот же файл MIDI. Еще несколько лет назад это можно было сделать только в студии на профессиональном оборудовании, стоившем сотни тысяч долларов.

Устройства MIDI подключаются к двум круглым 5-контактным разъемам DIN звукового адаптера, используемым для входных (MIDI-IN) и выходных (MIDI-OUT) сигналов. Многие устройства также имеют порт MIDI-THRU, который передает сигналы, поступающие на вход устройства, непосредственно на его выход, но звуковые платы, как правило, такого порта не имеют. Интересно, что в соответствии со стандартом MIDI данные передаются только через контакты 1 и 3 разъемов. Контакт 2 экранирован, а контакты 4 и 5 не используются.

Основная функция интерфейса MIDI звуковой платы состоит в конвертировании (преобразовании) потока байтов (т. е. параллельно поступающих 8 бит) данных, которые передаются системной шиной компьютера, в последовательный поток данных в формате MIDI. Устройства MIDI оснащены асинхронными последовательными портами, работающими на скорости 31,25 Кбод. При обмене данными в соответствии со стандартом MIDI используются восемь информационных разрядов с одним стартовым и одним стоповым битами, причем на последовательную передачу 1 байта затрачивается 320 мс.

В соответствии со стандартом MIDI сигналы передаются по специальной неэкранированной витой паре, которая может иметь максимальную длину до 15 м (хотя большинство продаваемых кабелей имеют длину 3 или 6 м). С помощью шлейфа можно также подключить несколько устройств MIDI, чтобы объединить их возможности. Полная длина цепочки устройств MIDI не ограничена, но длина каждого отдельного кабеля не должна превышать 15 м.

В системах типа legacy-free нет разъема игрового порта (MIDI-порта) - все устройства подключаются к шине типа USB.

Программное обеспечение для устройств MIDI. С операционными системами Windows 9х, Windows Me и Windows 2000 поставляется программа «Универсальный проигрыватель» (Media Player), которая воспроизводит файлы MIDI. Для того чтобы использовать все возможности MIDI, рекомендуется приобрести специализированное программное обеспечение для выполнения различных операций редактирования файлов MIDI (задание темпа проигрывания, вырезания, а также вставки различной предварительно записанной музыки).

Ряд звуковых плат поставляется вместе с программами, в которых предусмотрены возможности редактирования файлов MIDI. Кроме того, многие бесплатные и условно-бесплатные инструментальные средства (программы) свободно распространяются через Интернет, но действительно мощное программное обеспечение, которое позволяет создавать и редактировать файлы MIDI, приходится покупать отдельно.

Запись. Практически на всех звуковых платах устанавливается входной разъем, подключив микрофон к которому, можно записать свой голос. С помощью программы «Звукозапись» (Sound Recorder) в системе Windows воспроизводят, редактируют и записывают звуковой файл в специальном формате.wav.

Ниже перечислены основные способы использования файлов формата.wav:

  • сопровождение тех или иных событий в системе Windows. Для этого следует воспользоваться опцией «Звук» (Sounds) панели управления Windows;
  • добавление речевых комментариев с помощью элементов управления Windows OLE и ActiveX к документам различного типа;
  • ввод сопроводительного текста в презентации, создаваемые с помощью программ PowerPoint, Freelance Graphics, Corel Presentations или др.

С целью уменьшения объема и дальнейшего использования в Интернете файлы.wav преобразуют в файлы формата.mp3 или.wma.

Аудиокомпакт-диски. С помощью накопителя CD-ROM можно прослушивать аудиокомпакт-диски не только через акустические системы, но и через наушники, параллельно работая с другими программами. К ряду звуковых плат прилагаются программы для проигрывания компакт-дисков, а через Интернет такие программы зачастую скачивают бесплатно. В этих программах обычно присутствует визуальный дисплей, имитирующий переднюю панель проигрывателя компакт-дисков для управления с помощью клавиатуры или мыши.

Звуковой смеситель (микшер). При наличии нескольких источников звука и только одной акустической системы необходимо воспользоваться звуковым смесителем. Большинство звуковых плат оснащены встроенным смесителем звука (микшером), позволяющим смешивать звук от аудио-, MIDI- и WAV-источников, линейного входа и CD-проигрывателя, воспроизводя его на едином линейном выходе. Обычно интерфейсы программ для смешивания звука на экране выглядят так же, как панель стандартного звукового смесителя. Это позволяет легко управлять громкостью звука каждого источника.

Звуковые платы: основные понятия и термины. Для того чтобы понять, что такое звуковые платы, сначала необходимо разобраться в терминах. Звук - это колебания (волны), распространяющиеся в воздухе или другой среде от источника колебаний во всех направлениях. Когда волны достигают уха, расположенные в нем чувствительные элементы воспринимают вибрацию и слышится звук.

Каждый звук характеризуется частотой и интенсивностью (громкостью).

Частота - это количество звуковых колебаний в секунду; она измеряется в герцах (Гц). Один цикл (период) - это одно движение источника колебания (туда и обратно). Чем выше частота, тем выше тон.

Человеческое ухо воспринимает лишь небольшой диапазон частот. Очень немногие слышат звуки ниже 16 Гц и выше 20 кГц (1 кГц = 1000 Гц). Частота звука самой низкой ноты рояля равна 27 Гц, а самой высокой - чуть больше 4 кГц. Наивысшая звуковая частота, которую могут передать радиовещательные FM-стан- ции, составляет 15 кГц.

Громкость звука определяется амплитудой колебаний, которая зависит в первую очередь от мощности источника звука. Например, струна фортепьяно при слабом ударе по клавише звучит тихо, поскольку диапазон ее колебаний невелик. Если ударить по клавише посильнее, то амплитуда колебаний струны увеличится. Громкость звука измеряется в децибелах (дБ). Шорох листьев, например, имеет громкость около 20 дБ, обычный уличный шум - около 70 дБ, а близкий удар грома - 120 дБ.

Оценка качества звукового адаптера. Для оценки качества звукового адаптера используются три параметра:

  • диапазон частот;
  • коэффициент нелинейных искажений;
  • отношение сигнал/шум.

Частотная характеристика определяет тот диапазон частот, в котором уровень записываемых и воспроизводимых амплитуд остается постоянным. Для большинства звуковых плат диапазон составляет от 30 Гц до 20 кГц. Чем шире этот диапазон, тем лучше плата.

Коэффициент нелинейных искажений характеризует нелинейность звуковой платы, т. е. отличие реальной кривой частотной характеристики от идеальной прямой, или, проще говоря, коэффициент характеризует чистоту воспроизведения звука. Каждый нелинейный элемент является причиной искажения. Чем меньше этот коэффициент, тем выше качество звука.

Высокие значения отношения сигнал/шум (в децибелах) соответствуют лучшему качеству воспроизведения звука.

Дискретизация. Если в компьютере установлена звуковая плата, то возможна запись звука в цифровой (называемой также дискретной) форме, в этом случае компьютер используется в качестве записывающего устройства. В состав звуковой платы входит небольшая микросхема - аналого-цифровой преобразователь, или АЦП (Analog-to-Digital Converter - ADC), который при записи преобразует аналоговый сигнал в цифровую форму, понятную компьютеру. Аналогично при воспроизведении цифроаналоговый преобразователь (Digital-to-Analog Converter - DAC) преобразует аудиозапись в звук, который способны воспринимать наши уши.

Процесс превращения исходного звукового сигнала в цифровую форму (рис. 5.5), в которой он и хранится для последующего воспроизведения, называется дискретизацией, или оцифровыванием. При этом сохраняются мгновенные значения звукового сигнала в определенные моменты времени, называемые выбор-


Рис. 5.5. Схема преобразования звукового сигнала в цифровую форму ками. Чем чаще берутся выборки, тем точнее цифровая копия звука соответствует оригиналу.

Первым стандартом МРС предусматривался 8-разрядный звук. Разрядность звука характеризует количество бит, используемых для цифрового представления каждой выборки.

Восемь разрядов определяют 256 дискретных уровней звукового сигнала, а если использовать 16 бит, то их количество достигает 65 536 (естественно, качество звука значительно улучшается). Для записи и воспроизведения речи достаточно 8-разрядного представления, а для музыки требуется 16 разрядов. Большинство старых плат поддерживает лишь 8-разрядное представление звука, все современные платы обеспечивают 16 разрядов и более.

Качество записываемого и воспроизводимого звука наряду с разрешением определяется частотой дискретизации (количеством выборок в секунду). Теоретически она должна быть в 2 раза выше максимальной частоты сигнала (т. е. верхней границы частот) плюс 10%-ный запас. Порог слышимости человеческого уха - 20 кГц. Записи с компакт-диска соответствует частота 44,1 кГц.

Звук, дискретизированный на частоте 11 кГц (11 000 выборок в секунду), получается более размытым, чем звук, дискретизированный на частоте 22 кГц. Объем дискового пространства, необходимый для записи 16-разрядного звука с частотой дискретизации 44,1 кГц в течение 1 мин, составит 10,5 Мб. При 8-раз- рядном представлении, монофоническом звучании и частоте дискретизации 11 кГц необходимое дисковое пространство сокращается в 16 раз. Эти данные можно проверить с помощью программы «Звукозапись»: запишите звуковой фрагмент с различными частотами дискретизации и посмотрите на объем полученных файлов.

Трехмерный звук. Одним из наиболее сложных испытаний для звуковых плат, входящих в состав игровых систем, является выполнение задач, связанных с обработкой трехмерного звука. Существует несколько факторов, усложняющих решение задач подобного рода:

  • разные стандарты позиционирования звука;
  • аппаратное и программное обеспечение, используемое для обработки трехмерного звука;
  • проблемы, связанные с поддержкой интерфейса DirectX.

Позиционный звук. Позиционирование звука представляет собой общую технологию для всех зЬ-звуковых плат и включает настройку определенных параметров, таких, как реверберация или отражение звука, выравнивание (баланс) и указание на «расположение» источника звука. Все эти компоненты создают иллюзию звуков, раздающихся впереди, справа, слева от пользователя или даже за его спиной. Наиболее важным элементом позиционного звука является функция преобразования HRTF (Head Related Transfer Function), определяющая изменение восприятия звука в зависимости от формы уха и угла поворота головы слушателя. Параметры этой функции описывают условия, при которых «реалистичный» звук воспринимается совершенно иначе, когда голова слушателя повернута в ту или другую сторону. Использование акустических систем с несколькими колонками, «окружающими» пользователя со всех сторон, а также сложные звуковые алгоритмы, дополняющие воспроизводимый звук управляемой реверберацией, позволяют сделать синтезированный компьютером звук еще более реалистичным.

Обработка трехмерного звука. Важным фактором качественного звучания являются различные способы обработки трехмерного звука в звуковых платах, в частности:

  • централизованная (для обработки трехмерного звука используется центральный процессор, что приводит к снижению общего быстродействия системы);
  • обработка звуковой платы (3 D-ускорение) с помощью мощного цифрового обработчика сигналов (DSP), выполняющего обработку непосредственно в звуковой плате.

Звуковые платы, осуществляющие централизованную обработку трехмерного звука, могут стать основной причиной снижения частоты смены кадров (числа анимационных кадров, выводимых на экран за каждую секунду) при использовании функции трехмерного звука. В звуковых платах со встроенным аудиопроцессором частота смены кадров при включении или отключении трехмерного звука почти не изменяется.

Как показывает практика, средняя частота смены кадров реалистичной компьютерной игры должна быть не меньше 30 кадр./с (кадров в секунду). При наличии быстродействующего процессора, например, Pentium III 800 МГц, и какой-либо современной ЗЭ-звуковой платы такая частота достигается достаточно легко. При использовании более медленного процессора, скажем, Celeron 300А с рабочей частотой 300 МГц, и платы с централизованной обработкой трехмерного звука частота смены кадров станет намного ниже 30 кадр./с. Для того чтобы увидеть, как влияет обработка трехмерного звука на скорость компьютерных игр, предусмотрена функция отслеживания частоты кадров, встроенная в большинство игр. Частота смены кадров связана непосредственно с коэффициентом использования процессора; повышение ресурсных требований к процессору приведет к уменьшению частоты смены кадров.

Технологии трехмерного звука и трехмерного видеоизображения представляют наибольший интерес прежде всего для разработчиков компьютерных игр, однако их использование в коммерческой среде также не за горами.

Подключение стереосистемы к звуковой плате. Процесс подключения стереосистемы к звуковой плате заключается в их подсоединении с помощью кабеля. Если в звуковой плате есть выход для акустической системы или наушников и линейный стереовыход, то для подключения стереосистемы лучше воспользоваться последним. В этом случае получается более качественный звук, поскольку на линейный выход сигнал поступает, минуя цепи усиления, и поэтому практически не подвергается искажениям, а усиливать сигнал будет только стереосистема.

Соедините этот выход с дополнительным входом вашей стереосистемы. Если стереосистема не имеет вспомогательных входов, следует воспользоваться другими, например, входом для проигрывателя компакт-дисков. Стереоусилитель и компьютер совсем не обязательно располагать рядом, поэтому длина соединительного кабеля может составить несколько метров.

В ряде стереомагнитол и радиоприемников на задней панели предусмотрен разъем для подключения тюнера, магнитофона и проигрывателя компакт-дисков. Используя этот разъем, а также линейные вход и выход звуковой платы, можно прослушивать звук, поступающий от компьютера, а также радиопередачи посредством акустической стереосистемы.

Цель. Осмыслить процесс преобразования звуковой информации, усвоить понятия необходимые для подсчета объема звуковой информации. Научиться решать задачи по теме.

Цель-мотивация. Подготовка к ЕГЭ.

План урока

1. Просмотр презентации по теме с комментариями учителя. Приложение 1

Материал презентации: Кодирование звуковой информации.

С начала 90-х годов персональные компьютеры получили возможность работать со звуковой информацией. Каждый компьютер, имеющий звуковую плату, микрофон и колонки, может записывать, сохранять и воспроизводить звуковую информацию.

Процесс преобразования звуковых волн в двоичный код в памяти компьютера :

Процесс воспроизведения звуковой информации, сохраненной в памяти ЭВМ :

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда, тем он громче для человека, чем больше частота сигнала, тем выше тон. Программное обеспечение компьютера в настоящее время позволяет непрерывный звуковой сигнал преобразовывать в последовательность электрических импульсов, которые можно представить в двоичной форме. В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация . Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды.

Таким образом, непрерывная зависимость амплитуды сигнала от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек».Каждой «ступеньке» присваивается значение уровня громкости звука, его код(1, 2, 3 и так

далее). Уровни громкости звука можно рассматривать как набор возможных состояний, соответственно, чем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количество информации будет нести значение каждого уровня и тем более качественным будет звучание.

Аудиоадаптер (звуковая плата) - специальное устройство, подключаемое к компьютеру, предназначенное для преобразования электрических колебаний звуковой частоты в числовой двоичный код при вводе звука и для обратного преобразования (из числового кода в электрические колебания) при воспроизведении звука.

В процессе записи звука аудиоадаптер с определенным периодом измеряет амплитуду электрического тока и заносит в регистр двоичный код полученной величины. Затем полученный код из регистра переписывается в оперативную память компьютера. Качество компьютерного звука определяется характеристиками аудиоадаптера:

  • Частотой дискретизации
  • Разрядностью(глубина звука).

Частота временной дискретизации

Это количество измерений входного сигнала за 1 секунду. Частота измеряется в герцах (Гц). Одно измерение за одну секунду соответствует частоте 1 Гц. 1000 измерений за 1 секунду – 1 килогерц (кГц). Характерные частоты дискретизации аудиоадаптеров:

11 кГц, 22 кГц, 44,1 кГц и др.

Разрядность регистра (глубина звука) число бит в регистре аудиоадаптера, задает количество возможных уровней звука.

Разрядность определяет точность измерения входного сигнала. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического сигнала в число и обратно. Если разрядность равна 8 (16) , то при измерении входного сигнала может быть получено 2 8 = 256 (2 16 =65536) различных значений. Очевидно, 16 разрядный аудиоадаптер точнее кодирует и воспроизводит звук, чем 8-разрядный. Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней сигнала (состояний при данном кодировании) можно рассчитать по формуле:

N = 2 I = 2 16 = 65536, где I - глубина звука.

Таким образом, современные звуковые карты могут обеспечить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код. При двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, то есть частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации тем точнее процедура двоичного кодирования.

Звуковой файл - файл, хранящий звуковую информацию в числовой двоичной форме.

2. Повторяем единицы измерения информации

1 байт = 8 бит

1 Кбайт = 2 10 байт=1024 байт

1 Мбайт = 2 10 Кбайт=1024 Кбайт

1 Гбайт = 2 10 Мбайт=1024 Мбайт

1 Тбайт = 2 10 Гбайт=1024 Гбайт

1 Пбайт = 2 10 Тбайт=1024 Тбайт

3. Закрепить изученный материал, просмотрев презентацию, учебник

4. Решение задач

Учебник , показ решения на презентации.

Задача 1. Определить информационный объем стерео аудио файла длительностью звучания 1 секунда при высоком качестве звука(16 битов, 48 кГц).

Задача (самостоятельно). Учебник , показ решения на презентации.
Определить информационный объем цифрового аудио файла длительностью звучания которого составляет 10 секунда при частоте дискретизации 22,05 кГц и разрешении 8 битов.

5. Закрепление. Решение задач дома, самостоятельно на следующем уроке

Определить объем памяти для хранения цифрового аудио­файла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 битов.

В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретиза­ции и разрядность?

Объем свободной памяти на диске - 5,25 Мб, разрядность звуковой платы - 16. Какова длительность звучания цифро­вого аудиофайла, записанного с частотой дискретизации 22,05 кГц?

Одна минута записи цифрового аудиофайла занимает на дис­ке 1,3 Мб, разрядность звуковой платы - 8. С какой частотой дискретизации записан звук?

Какой объем памяти требуется для хранения цифрового аудиофайла с записью звука высокого качества при условии, что время звучания составляет 3 минуты?

Цифровой аудиофайл содержит запись звука низкого качест­ва (звук мрачный и приглушенный). Какова длительность звучания файла, если его объем составляет 650 Кб?

Две минуты записи цифрового аудиофайла занимают на дис­ке 5,05 Мб. Частота дискретизации - 22 050 Гц. Какова раз­рядность аудиоадаптера?

Объем свободной памяти на диске - 0,1 Гб, разрядность зву­ковой платы - 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 44 100 Гц?

Ответы

№ 92. 124,8 секунды.

№ 93. 22,05 кГц.

№ 94. Высокое качество звучания достигается при частоте дискретизации 44,1 кГц и разрядности аудиоадаптера, равной 16. Требуемый объем памяти - 15,1 Мб.

№ 95. Для мрачного и приглушенного звука характерны следующие параметры: частота дискретизации - 11 кГц, разрядность аудиоадаптера - 8. Длительность звучания равна 60,5 с.

№ 96. 16 битов.

№ 97. 20,3 минуты.

Литература

1. Учебник: Информатика, задачник-практикум 1 том, под редакцией И.Г.Семакина, Е.К. Хеннера)

2. Фестиваль педагогических идей «Открытый урок»Звук. Двоичное кодирование звуковой информации. Супрягина Елена Александровна, учитель информатики.

3. Н. Угринович. Информатика и информационные технологии. 10-11 классы. Москва. Бином. Лаборатория знаний 2003.

С меняющейся амплитудой и частотой. Чем выше амплитуда сигнала, тем он громче воспринимается человеком. Чем больше частота сигнала, тем выше его тон.

Рисунок 1. Амплитуда колебаний звуковых волн

Частота звуковой волны определяется количеством колебаний в одну секунду. Данная величина измеряется в герцах (Гц, Hz).

Ухо человека воспринимает звуки в диапазоне от $20$ Гц до $20$ кГц, данный диапазон называют звуковым . Количество бит, которое при этом отводится на один звуковой сигнал, называют глубиной кодирования звука . В современных звуковых картах обеспечивается $16-$, $32-$ или $64-$битная глубина кодирования звука. В процессе кодирования звуковой информации непрерывный сигнал заменяется дискретным , то есть преобразуется в последовательность электрических импульсов, состоящих из двоичных нулей и единиц.

Частота дискретизации звука

Одной из важных характеристик процесса кодирования звука является частота дискретизации, которая представляет собой количество измерений уровня сигнала за $1$ секунду:

  • одно измерение в одну секунду соответствует частоте $1$ гигагерц (ГГц);
  • $1000$ измерений в одну секунду соответствует частоте $1$ килогерц (кГц) .

Определение 2

Частота дискретизации звука - это количество измерений громкости звука за одну секунду.

Количество измерений может находиться в диапазоне от $8$ кГц до $48$ кГц, причем первая величина соответствует частоте радиотрансляции, а вторая - качеству звучания музыкальных носителей.

Замечание 1

Чем выше частота и глубина дискретизации звука, тем более качественно будет звучать оцифрованный звук. Самое низкое качество оцифрованного звука, которое соответствует качеству телефонной связи, получается, когда частота дискретизации равна 8000 раз в секунду, глубина дискретизации $8$ битов, что соответствует записи одной звуковой дорожки (режим «моно»). Самое высокое качество оцифрованного звука, которое соответствует качеству аудио -CD, достигается, когда частота дискретизации равна $48000$ раз в секунду, глубина дискретизации $16$ битов, что соответствует записи двух звуковых дорожек (режим «стерео»).

Информационный объем звукового файла

Следует отметить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла .

Оценим информационный объём моноаудиофайла ($V$), это можно сделать, используя формулу:

$V = N \cdot f \cdot k$,

где $N$ - общая длительность звучания, выражаемая в секундах,

$f$ - частота дискретизации (Гц),

$k$ - глубина кодирования (бит).

Пример 1

Например, если длительность звучания равна $1$ минуте и имеем среднее качество звука, при котором частота дискретизации $24$ кГц, а глубина кодирования $16$ бит, то:

$V=60 \cdot 24000 \cdot 16 \ бит=23040000 \ бит=2880000 \ байт = 2812,5 \ Кбайт=2,75 \ Мбайт.$

При кодировании стереозвука процесс дискретизации производится отдельно и независимо для левого и правого каналов, что, соответственно, увеличивает объём звукового файла в два раза по сравнению с монозвуком.

Пример 2

Например, оценим информационный объём цифрового стереозвукового файла, у котрого длительность звучания равна $1$ секунде при среднем качестве звука ($16$ битов, $24000$ измерений в секунду). Для этого глубину кодирования умножим на количество измерений в $1$ секунду и умножить на $2$ (стереозвук):

$V=16 \ бит \cdot 24000 \cdot 2 = 768000 \ бит = 96000 \ байт = 93,75 \ Кбайт.$

Основные методы кодирования звуковой информации

Существуют различные методы кодирования звуковой информации двоичным кодом, среди которых выделяют два основных направления: метод FM и метод Wave-Table .

Метод FM (Frequency Modulation ) основан на том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых будет представлять собой правильную синусоиду, а это значит, что его можно описать кодом. Процесс разложения звуковых сигналов в гармонические ряды и их представление в виде дискретных цифровых сигналов происходит в специальных устройствах, которые называют «аналогово-цифровые преобразователи» (АЦП).

Рисунок 2. Преобразование звукового сигнала в дискретный сигнал

На рисунке 2а изображен звуковой сигнал на входе АЦП, а на рисунке 2б изображен уже преобразованный дискретный сигнал на выходе АЦП.

Для обратного преобразования при воспроизведении звука, который представлен в виде числового кода, используют цифро-аналоговые преобразователи (ЦАП). Процесс преобразования звука изображен на рис. 3. Данный метод кодирования не даёт хорошего качества звучания, но обеспечивает компактный код.

Рисунок 3. Преобразование дискретного сигнала в звуковой сигнал

На рисунке 3а представлен дискретный сигнал, который мы имеем на входе ЦАП, а на рисунке 3б представлен звуковой сигнал на выходе ЦАП.

Таблично-волновой метод (Wave-Table ) основан на том, что в заранее подготовленных таблицах хранятся образцы звуков окружающего мира, музыкальных инструментов и т. д. Числовые коды выражают высоту тона, продолжительность и интенсивность звука и прочие параметры, характеризующие особенности звука. Поскольку в качестве образцов используются «реальные» звуки, качество звука, полученного в результате синтеза, получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов.

Примеры форматов звуковых файлов

Звуковые файлы имеют несколько форматов. Наиболее популярные из них MIDI, WAV, МРЗ.

Формат MIDI (Musical Instrument Digital Interface) изначально был предназначен для управления музыкальными инструментами. В настоящее время используется в области электронных музыкальных инструментов и компьютерных модулей синтеза.

Формат аудиофайла WAV (waveform) представляет произвольный звук в виде цифрового представления исходного звукового колебания или звуковой волны. Все стандартные звуки Windows имеют расширение WAV.

Формат МРЗ (MPEG-1 Audio Layer 3) - один из цифровых форматов хранения звуковой информации. Он обеспечивает более высокое качество кодирования.

1.Какое устройство компьютера моделирует мышление человека?
-Процессор

2.Действия над исходной информацией (фактами) в соответствии с некоторыми правилами - это
-обработка информации

3.Из предложенных сообщений выбрать правило
-при умножении простых дробей их числители и знаменатели перемножаются

4.Для кого, вероятнее всего, будет информативным следующее сообщение: «Программа - это алгоритм, записанный на языке программирования»?
-начинающий программист

5.Где хранится выполняемая в данный момент программа и обрабатываемые ею данные?
-в оперативной памяти

6.Какое устройство компьютера осуществляет процесс дискретизации звука?
-звуковая карта

7.Информативность сообщения, принимаемого человеком, определяется
-наличием новых знаний и понятностью

8.Вместо многоточий вставьте соответствующие понятия: «Каталог содержит информацию о..., хранящихся в...»
A) файлах, внешней памяти

9.Указать команду(ы), при выполнении которой(ых) выделенный фрагмент попадает в буфер обмена
В) вырезать и копировать

10.Какие из перечисленных действий относятся к форматированию текста?
-установка режима выравнивания

11.В прикладное программное обеспечение входят:
В) текстовые редакторы

12.Операционная система - это
-комплекс программ, организующих управление работой компьютера и его взаимодействие с пользователем

13.Предложены команды
5Сделать диск А текущим.
2Создать каталог TOWN
3Создать каталог STREET
1Создать файл Home.txt
4Войти в созданный каталог
Расположить пронумерованные команды так, чтобы был получен алгоритм, с помощью которого на пустой дискете создается файл с полным именем A:\TOWN\STREET\Home.txt
Б) 5,2,3,1

14.Для хранения текста требуется 84000 бита. Сколько страниц займет этот текст, если на странице размещается 30 строк по 70 символов в строке? Для кодирования текста используется таблица кодировки, состоящая из 256 символов.
84000/(log(256)/log(2))/30/70 = 5

15.Книга состоит из 64 страниц. На каждой странице 256 символов. Какой объем информации содержится в книге, если используется алфавит из 32 символов?
А) 81920 байтов Б) 40 Кбайт В)10 Кбайт Г) 16 Кбайт Д) 64 Кбайт
64*256*(log(32)/log(2)) /8/1024 = 10

16.Сколько символов содержит сообщение, записанное с помощью 16-символьного алфавита, если его объем составил 1/16 часть Мегабайта?
(1/16)*1024*1024*8/(log(16)/log(2)) = 131072

17.Сколько памяти занимает графическое изображение, если его размер 40x60 и для кодирования цвета пикселя используется двоичный код из 32-х битов.
А) 2400 байтов Б) 2100 байтов В) 960 байтов Г) 9600 байтов Д) 12000 байтов
40*60*32/8 = 9600

18.Текст занимает 0,25 Кбайт памяти. Сколько символов содержит этот текст, если используется таблица кодировки, состоящая из 256 символов?
0.25*1024*8/(log(256)/log(2)) = 256

19.Сколько битов информации содержится в сообщении объемом четверть Килобайта?
1/4*1024*8 = 2048