Современные методы шифрования информации. Современные алгоритмы шифрования

В связи с тем, что основной функцией нашего программного обеспечения является шифрование данных, нам часто задают вопросы, касающиеся тех или иных аспектов криптографии. Мы решили собрать наиболее часто задаваемые вопросы, в один документ и постарались дать на них максимально подробные, но, в то же время, не перегруженные лишней информацией ответы.

1. Что такое криптография?

Криптография — это теоретическая научная дисциплина, раздел математики, изучающая вопросы преобразования информации с целью ее защиты от разумных действий противника.

2. Что такое алгоритм шифрования?

Алгоритм шифрования — это набор логических правил, определяющих процесс преобразования информации из открытого состояния в зашифрованное (зашифровывание) и, наоборот, из зашифрованного состояния в открытое (расшифровывание).

Алгоритмы шифрования появляются в результате теоретических исследований, как отдельных ученых, так и научных коллективов.

3. Как с помощью шифрования защищаются данные?

Основной принцип защиты данных с помощью шифрования — это зашифровывание данных. Зашифрованные данные для постороннего выглядят как «информационный мусор» — бессмысленный набор символов. Таким образом, если информация в зашифрованном виде попадет к злоумышленнику, он просто не сможет ей воспользоваться.

4. Какой алгоритм шифрования самый стойкий?

В принципе, любой алгоритм шифрования, предложенный каким-либо известным специалистом в области криптографии, считается стойким до тех пор, пока не будет доказано обратное.

Как правило, все вновь появляющиеся алгоритмы шифрования публикуются для всеобщего ознакомления, и всесторонне изучаются в специализированных криптографических научных центрах. Результаты таких изучений также публикуются для всеобщего ознакомления.

5. Что такое ключ шифрования?

Ключ шифрования — это случайная, псевдослучайная или специальным образом сформированная последовательность бит, являющаяся переменным параметром алгоритма шифрования.

Иными словами, если зашифровать одну и ту же информацию одним и тем же алгоритмом, но разными ключами, результаты получится также разные.

Ключ шифрования имеет одну существенную характеристику — длину, которая, как правило, измеряется в битах.

6. Какие бывают алгоритмы шифрования?

Алгоритмы шифрования делятся на два больших класса — симметричные и асимметричные (или несимметричные).

Симметричные алгоритмы шифрования используют один и тот же ключ для зашифровывания информации и для ее расшифровывания. При этом ключ шифрования должен быть секретным.

Симметричные алгоритмы шифрования, как правило, просты в реализации и не требуют для своей работы много вычислительных ресурсов. Однако неудобство таких алгоритмов проявляется в случаях, когда, например, двум пользователям надо обменяться ключами. В этом случае пользователям надо или непосредственно встретиться друг с другом, или иметь какой-то надежный, защищенный от перехвата канал для пересылки ключа, что не всегда возможно.

Примеры симметричных алгоритмов шифрования — DES, RC4, RC5, AES, CAST.

Асимметричные алгоритмы шифрования используют два ключа — один для зашифровывания, другой для расшифровывания. В таком случае говорят о паре ключей. Один ключ из пары может быть открытым (доступным для всех), другой — секретным.

Асимметричные алгоритмы шифрования более сложны в реализации и более требовательны к вычислительным ресурсам, чем симметричные, однако, проблема обмена ключами между двумя пользователями решается проще.

Каждый пользователь может создать собственную пару ключей, и послать открытый ключ своему абоненту. Этим ключом можно только зашифровать данные, для расшифровывания нужен секретный ключ, который хранится только у его владельца. Таким образом, получение злоумышленником открытого ключа ничего ему не даст, поскольку расшифровать им зашифрованные данные невозможно.

Примеры асимметричных алгоритмов шифрования — RSA, El-Gamal.

7. Как взламывают алгоритмы шифрования?

В криптографической науке есть подраздел — криптоанализ, который изучает вопросы взлома алгоритмов шифрования, то есть получения открытой информации из зашифрованной без ключа шифрования.

Существует много различных способов и методов криптоанализа, большинство из которых слишком сложно и объемно для воспроизведения здесь.

Единственный метод, который уместно упомянуть — метод прямого перебора всех возможных значений ключа шифрования (также называемый методом «грубой силы», или brute force). Суть данного метода состоит в переборе всех возможных значений ключа шифрования до тех пор, пока не будет подобран нужный ключ.

8. Какова должна быть длина ключа шифрования?

На сегодняшний день для симметричных алгоритмов шифрования достаточной длиной ключа шифрования считается 128 бит (16 байт). Для полного перебора всех возможных ключей длиной 128 бит (атака brute force) за один год необходимо наличие 4,2х1022 процессоров производительностью 256 миллионов операций шифрования в секунду. Стоимость такого количества процессоров составляет 3,5х1024 долларов США (по данным Bruce Schneier, Applied Cryptography).

Существует международный проект distributed.net , целью которого является объединение пользователей Интернет для создания виртуального распределенного суперкомпьютера, занимающегося перебором ключей шифрования. Последний проект по взлому ключа 64 бит был завершен в течение 1757 дней, в нем приняло участие более трехсот тысяч пользователей, а вычислительная мощность всех компьютеров проекта была эквивалентна почти 50.000 процессорам AMD Athlon XP с тактовой частотой 2 ГГц.

При этом следует учитывать, что увеличение длины ключа шифрования на один бит увеличивает количество значений ключа, а, следовательно, и время перебора, в два раза. То есть, исходя из вышеприведенных цифр, за время 1757 * 2 дней можно взломать не 128-битный ключ, как может показаться на первый взгляд, а всего лишь 65-битный.

9. Я слышал о ключах шифрования 1024 и даже 2048 бит, а вы говорите, что 128 бит вполне достаточно. Что это значит?

Все правильно, ключи шифрования 512, 1024 и 2048 бит, а иногда и длиннее используются в асимметричных алгоритмах шифрования. В них используются принципы, совершенно отличные от симметричных алгоритмов, поэтому масштабы ключей шифрования также разные.

Ответ на этот вопрос — самая охраняемая тайна спецслужб любого государства. С теоретической точки зрения прочитать данные, зашифрованные с помощью известного алгоритма ключом достаточной длины невозможно (см. предыдущие вопросы), однако, кто знает, что скрывается за завесой государственной тайны? Вполне может оказаться, что существуют какие-то технологии инопланетян, известные правительству, с помощью которых можно взломать любой шифр 🙂

Единственное, что можно утверждать с уверенностью — ни одно государство, ни одна спецслужба не раскроет этого секрета, и даже в случае наличия возможности как-то расшифровывать данные, никогда и никак этого не проявит.

Для иллюстрации этого утверждения можно привести исторический пример. Во время второй мировой войны британскому премьер-министру Уинстону Черчиллю в результате перехвата и дешифровки немецких сообщений стало известно о предстоящей бомбардировке города Ковентри. Несмотря на это, он не принял никаких мер, чтобы противник не узнал о том, что британская разведка может дешифровать их сообщения. В результате, в ночь с 14 на 15 ноября 1940 года Ковентри был разрушен немецкой авиацией, погибло большое количество мирных жителей. Таким образом, для Черчилля цена разглашения информации о том, что он может дешифровать немецкие сообщения, оказалась выше цены нескольких тысяч человеческих жизней.

Очевидно, что для современных политиков цена подобной информации еще выше, поэтому о возможностях современных спецслужб мы ничего не узнаем, ни в явном виде, ни в косвенном. Так что если даже ответ на этот вопрос утвердительный, эта возможность, скорее всего, никак не проявится.

Источник: SecurIT

^ вернуться в начало ^

Обычно, новые алгоритмы шифрования публикуются для всеобщего ознакомления и изучаются в специализированных научных центрах. Результаты таких изучений тоже публикуются для всеобщего ознакомления.

Симметричные алгоритмы
Алгоритмы шифрования делятся на два больших класса: симметричные (AES, ГОСТ, Blowfish, CAST, DES) и асимметричные (RSA, El-Gamal). Симметричные алгоритмы шифрования используют один и тот же ключ для зашифровывания информации и для ее расшифровывания, а асимметричные алгоритмы используют два ключа — один для зашифровывания, другой для расшифровывания.

Если зашифрованную информацию необходимо передавать в другое место, то в этом надо передавать и ключ для расшифрования. Слабое место здесь — это канал передачи данных — если он не защищенный или его прослушивают, то ключ для расшифрования может попасть к злоумышленику. Системы на ассиметричных алгоритмах лишены этого недостатка. Поскольку каждый участник такой системы обладает парой ключей: Открытым и Секретным Ключом.

Ключ шифрования
Это случайная или специальным образом созданная по паролю последовательность бит, являющаяся переменным параметром алгоритма шифрования.
Если зашифровать одни и те же данные одним алгоритмом, но разными ключами, результаты получатся тоже разные.

Обычно в Программах для шифрования (WinRAR, Rohos и т.д.) ключ создается из пароля, который задает пользователь.

Ключ шифрования бывает разной длины, которая, как правило, измеряется в битах. С увеличением длины ключа повышается теоритическая стойкость шифра. На практике это не всегда верно.

В криптографии считается, что механизм шифрования — это несекретная величина, и злоумышленник может иметь полный исходный код алгоритма шифрования, а также зашифрованный текст (правило Керкхоффа). Еще одно допущение, которое может иметь место — злоумышленник может знать часть незашифрованного (открытого) текста.

Стойкость алгоритма шифрования.
Алгоритм шифрования считается стойким до тех пор, пока не будет доказано обратное. Таким образом, если алгоритм шифрования опубликован, существует более 5 лет, и для него не найдено серьезных уязвимостей, можно считать, что его стойкость подходит для задач защиты секретной информации.

Теоретическая и практическая стойкость.
В 1949 г. К.Э. Шеннон опубликовал статью «Теория связи в секретных системах». Шеннон рассматривал стойкость криптографических систем как Практическую и Теоритическую. Вывод по теоритической стойкости до сих пор остается пессимистическим: длина ключа должна быть равна длине открытого текста.
Поэтому Шеннон также рассмотрел вопрос и по практической стойкости криптографических систем. Надежна ли система, если злоумышленник обладает ограниченным временем и вычислительными ресурсами для анализа перехваченных сообщений?

Обычно уязвимости находят в программах, которые шифруют данные по какому-либо алгоритму. В этом случае, программисты допускают ошибку в логике программы или в криптографическом протоколе, благодaря чему, изучив, как работает программа (на низком уровне), можно в итоге получить доступ к секретной информации.

Взлом алгоритма шифрования
Считается, что криптосистема раскрыта, если злоумышленник сможет вычислить секретный ключ, а также выполнить алгоритм преобразования, эквивалентный исходному криптоалгоритму. И чтобы этот алгоритм был выполним за реальное время.

В криптологии есть подраздел — криптоанализ, который изучает вопросы взлома или подделывания зашифрованных сообщений. Существует много способов и методов криптоанализа. Самый популярный — это метод прямого перебора всех возможных значений ключа шифрования (так называемым методом «грубой силы» или brute force). Суть данного метода состоит в переборе всех возможных значений ключа шифрования до тех пор, пока не будет подобран нужный ключ.

На практике это означает, что злоумышленник должен:

  • Иметь в распоряжении криптосистему (т.е. программу) и примеры зашифрованных сообщений.
  • Разобраться в криптографическом протоколе. Иначе говоря, как программа шифрует данные.
  • Разработать и реализовать алгоритм перебора Ключей для этой криптосистемы.

Как определить, что ключ верный или нет?
Все зависит от конкретной программы и реализации протокола шифрования. Обычно, если после расшифрования получился ‘мусор’, то это неверный Ключ. А если более менее осмысленный текст (это можно проверить), то значит, Ключ верный.

Алгоритмы шифрования
AES (Rijndael) . В настоящее время является федеральным стандартом шифрования США.

Какой алгоритм шифровки выбрать для защиты информации?

Утвержден министерством торговли в качестве стандарта 4 декабря 2001 года. Решение вступило в силу с момента опубликования в федеральном реестре (06.12.01). В качестве стандарта принят вариант шифра только с размером блока 128 бит.

ГОСТ 28147-8. Стандарт Российской Федерации на шифрование и имитозащиту данных. Первоначально имел гриф (ОВ или СС — точно не известно), затем гриф последовательно снижался, и к моменту официального проведения алгоритма через Госстандарт СССР в 1989 году был снят. Алгоритм остался ДСП (как известно, ДСП не считается грифом). В 1989 году стал официальным стандартом СССР, а позже, после распада СССР, федеральным стандартом Российской Федерации.

Blowfish Сложная схема выработки ключевых элементов существенно затрудняет атаку на алгоритм методом перебора, однако делает его непригодным для использования в системах, где ключ часто меняется, и на каждом ключе шифруется небольшие по объему данные.

Алгоритм лучше всего подходит для систем, в которых на одном и том же ключе шифруются большие массивы данных.

DES Федеральный стандарт шифрования США в 1977-2001 годах. В качестве федерального стандарта США принят в 1977 году. В декабре 2001 года утратил свой статус в связи с введением в действие нового стандарта.

CAST В некотором смысле аналог DES.

www.codenet.ru/progr/alg/enc
Алгоритмы шифрования, Обзор, информация, сравнение.

http://www.enlight.ru/crypto
Материалы по асимметричному шифрованию, цифровой подписи и другим «современным» криптографическим системам.

Александр Великанов,
Ольга Чебан,
Tesline-Service SRL.

Бывший банкир из Абу-Даби Мохаммад Гейт бин Махах Аль Мазруи разработал шифр, который, как он заявляет, невозможно взломать. Шифр под названием «Код Абу-Даби» создан на основе группы символов, придуманных самим Аль Мазруи. В его коде каждая буква заменена специально изобретенным символом, и эти символы не принадлежат ни одному из известных в мире языков.

Какие алгоритмы шифрования данных более безопасны

Для работы над шифром, который Аль Мазруи называет «абсолютно новым», разработчику понадобилось полтора года.

По словам энтузиаста, создать свой собственный код под силу каждому, а сложность шифра определяет длина его ключа. Считается, что в принципе при наличии желания, определенных навыков и соответствующего программного обеспечения практически каждый, даже самый сложный шифр может быть взломан.

Однако Аль Мазруи уверяет, что его творение не поддается взлому и является на сегодня самым надежным шифром. «Расшифровать документ, закодированный «Кодом Абу-Даби», практически невозможно», — уверен Аль Мазруи.

Чтобы доказать свою правоту, банкир бросил вызов всем незаурядным шифровальщикам, хакерам и криптографам, призывая их попробовать взломать его шифр.

3. Криптос — скульптура, которую американский ваятель Джеймс Сэнборн установил на территории штаб-квартиры ЦРУ в Лэнгли, штат Вирджиния, в 1990 году. Зашифрованное послание, нанесенное на нее, до сих пор не могут разгадать.

4. Шифр, нанесенный на китайский золотой слиток . Семь золотых слитков были в 1933 году предположительно выданы генералу Ваню в Шанхае. На них нанесены картинки, китайские письмена и какие-то зашифрованные сообщения, в том числе латинскими буквами. Они, возможно, содержат свидетельства подлинности металла, выданные одним из банков США.

Какой алгоритм шифрования выбрать в TrueCrypt

5. Криптограммы Бейла — три зашифрованных сообщения, которые, как предполагается, содержат сведения о местонахождении клада из двух фургонов золота, серебра и драгоценных камней, зарытого в 1820-х годах под Линчбергом, что в округе Бедфорд, штат Виргиния, партией золотоискателей под предводительством Томаса Джефферсона Бейла. Цена не найденного доныне клада в пересчете на современные деньги должна составлять около 30 млн долларов. Загадка криптограмм не раскрыта до сих пор, в частности, спорным остается вопрос о реальном существовании клада. Одно из сообщений расшифровано — в нем описан сам клад и даны общие указания на его местоположение. В оставшихся нераскрытыми письменах, возможно, содержатся точное место закладки и список владельцев клада. (подробная информация)

6. Рукопись Войнича , которую часто называют самой таинственной в мире книгой. В рукописи использован уникальный алфавит, в ней около 250 страниц и рисунки, изображающие неведомые цветы, обнаженных нимф и астрологические символы. Впервые она появилась в конце XVI века, когда император Священной Римской империи Рудольф II купил ее в Праге у неизвестного торговца за 600 дукатов (около 3,5 кг золота, сегодня более 50 тысяч долларов). От Рудольфа II книга перешла к дворянам и ученым, а в конце XVII века исчезла. Манускрипт вновь появился примерно в 1912 году, когда его купил американский книготорговец Вилфрид Войнич. После его смерти рукопись была передана в дар Йельскому университету. Британский ученый Гордон Рагг считает, что книга — искусная мистификация. В тексте есть особенности, не свойственные ни одному из языков. С другой стороны, некоторые черты, например, длина слов, способы соединения букв и слогов, похожи на существующие в настоящих языках. «Многие считают, что все это слишком сложно для мистификации, чтобы выстроить такую систему, какому-нибудь безумному алхимику потребовались бы годы», — говорит Рагг. Однако Рагг показывает, что добиться такой сложности можно было легко, используя шифровальное устройство, придуманное примерно в 1550 году и названное сеткой Кардана. В этой таблице символов слова создаются передвижением карточки с прорезанными в ней отверстиями. Благодаря пробелам, оставленным в таблице, слова получаются разной длины. Накладывая такие решетки на таблицу слогов манускрипта, Рагг создал язык, которому присущи многие, если не все, особенности языка рукописи. По его словам, на создание всей книги хватило бы трех месяцев. (подробная информация, википедия)

7. Шифр Дорабелла , составленный в 1897 году британским композитором сэром Эдвардом Уильямом Эльгаром. В зашифрованном виде он отправил письмо в город Вульвергемптон своей подруге Доре Пенни, 22-летней дочери Альфреда Пенни, настоятеля собора святого Петра. Этот шифр остается неразгаданным.

8. До недавнего времени в списке присутствовал и чаошифр , который не смогли раскрыть при жизни его создателя. Шифр изобрел Джон Ф. Байрн в 1918 году, и в течение почти 40 лет безуспешно пытался заинтересовать им власти США. Изобретатель предложил денежную награду тому, кто сможет раскрыть его шифр, но в результате никто за ней не обратился.

Но в мае 2010 года члены семьи Байрна передали все оставшиеся от него документы в Национальный музей криптографии в Мэрилэнде, что привело к раскрытию алгоритма.

9. Шифр Д’Агапейеффа . В 1939 году британский картограф русского происхождения Александер Д’Агапейефф опубликовал книгу по основам криптографии Codes and Ciphers, в первом издании которой привел шифр собственного изобретения. В последующие издания этот шифр включен не был. Впоследствии Д`Агапейефф признался, что забыл алгоритм раскрытия этого шифра. Подозревают, что неудачи, постигшие всех, кто пытался расшифровать его работу, вызваны тем, что при зашифровке текста автор допускал ошибки.

Но в наше время появилась надежда, что шифр удастся раскрыть с использованием современных методов — например, генетического алгоритма.

10. Таман Шуд . 1 декабря 1948 года на побережье Австралии в Сомертоне, что под Аделаидой, было найдено мертвое тело мужчины, одетого в свитер и пальто, несмотря на характерно жаркий для австралийского климата день. Документов при нем не обнаружили. Попытки сравнить отпечатки его зубов и пальцев с имеющимися данными на живых людей также ни к чему не привели. Патологоанатомическое освидетельствование выявило противоестественный прилив крови, которой была наполнена, в частности, его брюшная полость, а также увеличение внутренних органов, но никаких инородных веществ в его организме при этом найдено не было. На железнодорожной станции одновременно нашли чемодан, который мог принадлежать погибшему. В чемодане лежали брюки с секретным карманом, в котором нашли вырванный из книги кусок бумаги с напечатанными на нем словами Taman Shud . Следствие установило, что клочок бумаги был вырван из очень редкого экземпляра сборника «Рубаи» великого персидского поэта Омара Хайяма. Сама книга была обнаружена на заднем сидении автомобиля, брошенного незапертым. На задней обложке книги были небрежно набросаны пять строк заглавными буквами — смысл этого послания разгадать так и не удалось. По сей день эта история остается одной из самых таинственных загадок Австралии.

Доброго времени суток уважаемый пользователь. В этой статье мы поговорим на такие темы, как: Алгоритмы шифрования , Симметричный алгоритм шифрования основные понятия .

Большинство средств защиты информации базируется на использовании криптографических шифров и процедур шифрования и расшифрования .

В соответствии со стандартом шифрования ГОСТ 28147-89 под шифром понимают совокупность обратимых преобразований множества открытых данных на множество зашифрованных данных, задаваемых ключом и алгоритмом криптографического преобразования.

Ключ – это конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования данных , обеспечивающее выбор только одного варианта из всех возможных для данного алгоритма. В симметричных криптоалгоритмах для зашифрования и расшифрования сообщения используется один и тот же блок информации (ключ). Хотя алгоритм воздействия на передаваемые данные может быть известен посторонним лицам, но он зависит от секретного ключа, которым должны обладать только отправитель и получатель. Симметричные криптоалгоритмы выполняют преобразование небольшого блока данных (1 бит либо 32-128 бит) в зависимости от секретного ключа таким образом, что прочесть исходное сообщение можно, только зная этот секретный ключ.

Симметричный алгоритм шифрования.

Симметричные криптосистемы позволяют на основе симметричных криптоалгоритмов кодировать и декодировать файлы произвольной длины. В зависимости от размера блока информации симметричные криптоалгоритмы делятся на блочные шифры и поточные шифры.

Для блочных шифров единицей шифрования является блок из нескольких байтов. Результат шифрования зависит от всех исходных байтов этого блока. Блочное шифрование применяется при пакетной передаче информации и кодировании файлов. Блочные шифры шифруют целые блоки информации (от 4 до 32 байт) как единое целое – это значительно увеличивает стойкость преобразований к атаке полным перебором и позволяет использовать различные математические и алгоритмические преобразования.

Для поточных шифров единицей шифрования является один бит или один байт. Результат обычно зависит от шифрования прошедшего ранее входного потока. Эта схема шифрования применяется в системах передачи потоков информации, то есть в тех случаях, когда передача информации начинается и заканчивается в произвольные моменты времени.

Характерная особенность симметричных блочных алгоритмов заключается в том, что в ходе своей работы они производят преобразование блока входной информации фиксированной длины и получают результирующий блок того же объема, но не доступный для прочтения сторонним лицам, не владеющим ключом. Таким образом, схему работы симметричного блочного шифра можно описать функциями:

Функция

С = ЕК (М),
М = DK (C),
где М – исходный (открытый) блок данных;
С – зашифрованный блок данных.

Ключ К является параметром симметричного блочного криптоалгоритма и представляет собой блок двоичной информации фиксированного размера. Исходный М и зашифрованный С блоки данных также имеют равную фиксированную разрядность (но не обязательно равную длине ключа К).

Методика создания цепочек из зашифрованных блочными алгоритмами байтов позволяет шифровать ими пакеты информации неограниченной длины. Отсутствие статистической корреляции между битами выходного потока блочного шифра используется для вычисления контрольных сумм пакетов данных и в хэшировании паролей. На сегодняшний день разработано достаточно много стойких блочных шифров.

Криптоалгоритм считается идеально стойким, если для прочтения зашифрованного блока данных необходим перебор всех возможных ключей до тех пор, пока расшифрованное сообщение не окажется осмысленным. В общем случае стойкость блочного шифра зависит только от длины ключа и возрастает экспоненциально с ее ростом.

Идеально стойкие криптоалгоритмы должны удовлетворять еще одному важному требованию. При известных исходном и зашифрованном значениях блока ключ, которым произведено это преобразование, можно узнать только путем полного перебора его значений.

Ситуации, в которых постороннему наблюдателю известна часть исходного текста, встречаются довольно часто. Это могут быть стандартные надписи в электронных бланках, фиксированные заголовки форматов файлов, часто встречающиеся в тексте длинные слова или последовательности байтов. Поэтому указанное выше требование не является чрезмерным и также строго выполняется стойкими блочными шифрами.

По мнению Клода Шеннона, для получения стойких блочных шифров необходимо использовать два общих принципа: рассеивание и перемешивание.

Примечание

Рассеивание представляет собой распространение влияния одного знака открытого текста на много знаков шифротекста, что позволяет скрыть статистические свойства открытого текста…

Примечание

Перемешивание предполагает использование таких шифрующих преобразований, которые усложняют восстановление взаимосвязи статистических свойств открытого и шифрованного текстов. Однако шифр должен не только затруднять раскрытие, но и обеспечивать легкость зашифрования и расшифрования при известном пользователю секретном ключе…

Распространенным способом достижения эффектов рассеивания и перемешивания является использование составного шифра, то есть такого, который может быть реализован в виде некоторой последовательности простых шифров, каждый из которых вносит свой вклад в значительное суммарное рассеивание и перемешивание.

В составных шифрах в качестве простых шифров чаще всего используются простые перестановки и подстановки. При перестановке просто перемешивают символы открытого текста, причем конкретный вид перемешивания определяется секретным ключом. При подстановке каждый символ открытого текста заменяют другим символом из того же алфавита, а конкретный вид подстановки также определяется секретным ключом. В современном блочном шифре блоки открытого текста и шифротекста представляют собой двоичные последовательности обычно длиной 64 бита. В принципе каждый блок может принимать 2 в 64 степени значений. Поэтому подстановки выполняются в очень большом алфавите, содержащем до 2 в степени 64 «символов».

При многократном чередовании простых перестановок и подстановок, управляемых достаточно длинным секретным ключом, можно получить очень стойкий шифр с хорошим рассеиванием и перемешиванием.

Все действия, производимые блочным криптоалгоритмом над данными, основаны на том факте, что преобразуемый блок может быть представлен в виде целого неотрицательного числа из диапазона, соответствующего его разрядности. Например, 32-битовый блок данных можно интерпретировать как число из диапазона 0 – 4294967295. Кроме того, блок, разрядность которого представляет собой «степень двойки», можно трактовать как сцепление нескольких независимых неотрицательных чисел из меньшего диапазона (указанный выше 32-битовый блок можно также представить в виде сцепления двух независимых 16-битовых чисел из диапазона 0 – 65535 или в виде сцепления четырех независимых 8-битовых чисел из диапазона 0 – 255).

Над этими числами блочный криптоалгоритм производит по определенной схеме следующие действия:

1. Математические функции:
– сложение X’ = X + V;
– «исключающее ИЛИ» X’ = X xor V;
– умножение по модулю 2N + 1 X’ = (X*V) mod (2N + 1);
– умножение по модулю 2N X’ = (X*V) mod 2N.
2. Битовые сдвиги:
– арифметический сдвиг влево X’ = X shl V;
– арифметический сдвиг вправо X’ = X shr V;
– циклический сдвиг влево X’ = X rol V;
– циклический сдвиг вправо X’ = X ror V.
3. Табличные подстановки:
– S-box (англ. substitute) X’ = Table .

В качестве параметра V для любого из этих преобразований может использоваться:

  • фиксированное число (например, X’ = X + 125).
  • число, получаемое из ключа (например, X’ = X + F(K)).
  • число, получаемое из независимой части блока (например, X2’ = X2 + F(X1)).

Примечание

Последний вариант используется в схеме, называемой сетью Фейстеля (по имени ее создателя)…

Сеть Фейстеля.

Последовательность выполняемых над блоком операций, комбинации перечисленных выше вариантов V и сами функции F и составляют отличительные особенности конкретного симметричного блочного криптоалгоритма.

Характерным признаком блочных алгоритмов является многократное и косвенное использование материала ключа. Это определяется в первую очередь требованием невозможности обратного декодирования в отношении ключа при известных исходном и зашифрованном текстах. Для решения этой задачи в приведенных выше преобразованиях чаще всего используется не само значение ключа или его части, а некоторая, иногда необратимая функция от материала ключа. Более того, в подобных преобразованиях один и тот же блок или элемент ключа используется многократно. Это позволяет при выполнении условия обратимости функции относительно величины X сделать функцию необратимой относительно ключа K.

Сетью Фейстеля называется схема (метод) обратимых преобразований текста, при котором значение, вычисленное от одной из частей текста, накладывается на другие части. Сеть Фейстеля представляет собой модификацию метода смешивания текущей части шифруемого блока с результатом некоторой функции, вычисленной от другой независимой части того же блока. Эта методика обеспечивает выполнение важного требования о многократном использовании ключа и материала исходного блока информации. Часто структуру сети выполняют таким образом, чтобы использовать для шифрования и расшифрования один и тот же алгоритм – различие состоит только в порядке использования материала ключа.

На основе сети Фейстеля построены американский стандарт шифрования данных DES и наш ГОСТ 28147-89.

Обзор распространенных в мире алгоритмов шифрования позволяет не только подобрать необходимый в вашей задаче алгоритм, но и оценить затраты на его реализацию и ожидающие пользователя возможности и требования.

Шифрование - метод защиты информации

Испокон веков не было ценности большей, чем информация. ХХ век - век информатики и информатизации. Технология дает возможность передавать и хранить все большие объемы информации. Это благо имеет и оборотную сторону. Информация становится все более уязвимой по разным причинам:

возрастающие объемы хранимых и передаваемых данных;
  • расширение круга пользователей, имеющих доступ к ресурсам ЭВМ, программам и данным;
  • усложнение режимов эксплуатации вычислительных систем.
  • Поэтому все большую важность приобретает проблема защиты информации от несанкционированного доступа (НСД) при передаче и хранении. Сущность этой проблемы - постоянна борьба специалистов по защите информации со своими "оппонентами".

    Характеристики составных алгоритмов шифрования

    Защита информации - совокупность мероприятий, методов и средств, обеспечивающих:

    • исключение НСД к ресурсам ЭВМ, программам и данным;
    • проверку целостности информации;
    • исключение несанкционированного использования программ (защита программ от копирования).

    Очевидная тенденция к переходу на цифровые методы передачи и хранени информации позволяет применять унифицированные методы и алгоритмы для защиты дискретной (текст, факс, телекс) и непрерывной (речь) информации.

    Испытанный метод защиты информации от НСД - шифрование (криптография). Шифрованием (encryption) называют процесс преобразования открытых данных (plaintext) в зашифрованные (шифртекст, ciphertext) или зашифрованных данных в открытые по определенным правилам с применением ключей. В англоязычной литературе зашифрование/расшифрование - enciphering/deciphering.

    С помощью криптографических методов возможно:

    шифрование информации;
  • реализация электронной подписи;
  • распределение ключей шифрования;
  • защита от случайного или умышленного изменения информации.
  • К алгоритмам шифровани предъявляются определенные требования:

    • высокий уровень защиты данных против дешифрования и возможной модификации;
    • защищенность информации должна основываться только на знании ключа и не зависеть от того, известен алгоритм или нет (правило Киркхоффа);
    • малое изменение исходного текста или ключа должно приводить к значительному изменению шифрованного текста (эффект "обвала");
    • область значений ключа должна исключать возможность дешифрования данных путем перебора значений ключа;
    • экономичность реализации алгоритма при достаточном быстродействии;
    • стоимость дешифрования данных без знания ключа должна превышать стоимость данных.

    Предания старины глубокой...

    Борис Оболикшто

    Криптология - древняя наука и обычно это подчеркивают рассказом о Юлии Цезаре (100 - 44 гг. до н. э.), переписка которого с Цицероном (106 - 43 гг. до н. э.) и другими "абонентами" в Древнем Риме шифровалась. Шифр Цезаря, иначе шифр циклических подстановок, состоит в замене каждой буквы в сообщении буквой алфавита, отстоящей от нее на фиксированное число букв. Алфавит считаетс циклическим, то есть после Z следует A. Цезарь заменял букву буквой, отстоящей от исходной на три.
    Сегодня в криптологии принято оперировать символами не в виде букв, а в виде чисел, им соответствующих. Так, в латинском алфавите можем использовать числа от 0 (соответствующего A) до 25 (Z). Обозначая число, соответствующее исходному символу, x, а закодированному - y, можем записать правило применения подстановочного шифра:

    y = x + z (mod N), (1)

    где z - секретный ключ, N - количество символов в алфавите, а сложение по модулю N - операция, аналогичная обычному сложению, с тем лишь отличием, что если обычное суммирование дает результат, больший или равный N, то значением суммы считается остаток от деления его на N.

    Шифр Цезаря в принятых обозначениях соответствует значению секретного ключа z = 3 (а у Цезаря Августа z = 4 ). Такие шифры раскрываютс чрезвычайно просто даже без знания значени ключа: достаточно знать лишь алгоритм шифрования, а ключ можно подобрать простым перебором (так называемой силовой атакой). Криптология и состоит из двух частей - криптографии, изучающей способы шифрования и/или проверки подлинности сообщений, и криптоанализа, рассматривающего пути расшифровки и подмены криптограмм. Неустойчивость первых шифров на многие столетия породила атмосферу секретности вокруг работы криптографа, затормозила развитие криптологии как науки.

    Так называемая "донаучная" криптография более чем за две тысячи лет полуинтуитивно "нащупала" довольно много интересных решений. Простейшее действие - выполнить подстановку не в алфавитном порядке. Неплохо также переставить символы в сообщении местами (шифры перестановок).

    Первым систематическим трудом по криптографии принято считать работу великого архитектора Леона Баттиста Альберти (1404 - 1472 гг.). Период до середины XVII века уже насыщен работами по криптографии и криптоанализу. Интриги вокруг шифрограмм в Европе того времени удивительно интересны. Увы, ограниченные возможностями журнала, мы выберем только одну известную со школы фамилию - Франсуа Виет (1540 - 1603 гг.), который при дворе короля Франции Генриха IV так успешно занимался криптоанализом (тогда еще не носившим этого гордого названия), что испанский король Филипп II жаловался Папе Римскому на применение французами черной магии. Но все обошлось без кровопролития - при дворе Папы в это время уже служили советники из семейства Ардженти, которых мы сегодня назвали бы криптоаналитиками.

    Можно утверждать, что на протяжении веков дешифрованию криптограмм помогает частотный анализ появления отдельных символов и их сочетаний. Вероятности появления отдельных букв в тексте сильно разнятся (для русского языка, например, буква "о" появляется в 45 раз чаще буквы "ф"). Это, с одной стороны, служит основой как для раскрытия ключей, так и дл анализа алгоритмов шифрования, а с другой - является причиной значительной избыточности (в информационном смысле) текста на естественном языке. Любая простая подстановка не позволяет спрятать частоту появления символа - как шило из мешка торчат в русском тексте символы, соответствующие буквам "о", "е", "а", "и", "т", "н". Но теори информации и мера избыточности еще не созданы, и для борьбы с врагом криптографа - частотным анализом - предлагается РАНДОМИЗАЦИЯ. Ее автор Карл Фридрих Гаусс (1777 - 1855 гг.) ошибочно полагал, что создал нераскрываемый шифр.

    Следующая заметная личность в истории криптологии, которую мы не должны пропустить, - голландец Огюст Керкхофф (1835 - 1903 гг.). Ему принадлежит замечательное "правило Керкхоффа": стойкость шифра должна определяться ТОЛЬКО секретностью ключа. Учитывая время, когда это правило было сформулировано, его можно признать величайшим открытием (до создания систематической теории еще более полувека!). Это правило полагает, что АЛГОРИТМ шифрования НЕ ЯВЛЯЕТСЯ СЕКРЕТНЫМ, а значит, можно вести открытое обсуждение достоинств и недостатков алгоритма.Таким образом, это правило переводит работы по криптологии в разряд ОТКРЫТЫХ научных работ, допускающих дискуссии, публикации и т. п.

    ХХ век - от интуиции к науке

    Последнее имя, которое мы назовем в донаучной криптологии, - инженер AT&T Жильбер Вернам (G.S. Vernam). В 1926 году он предложил действительно нераскрываемый шифр. Идея шифра состоит в том, чтобы в уравнении (1) для каждого следующего символа выбирать новое значение z. Другими словами, секретный ключ должен использоваться только один раз. Если такой ключ выбирается случайным образом, то, как было строго доказано Шенноном через 23 года, шифр являетс нераскрываемым. Этот шифр являетс теоретическим обоснованием для использовани так называемых "шифроблокнотов", широкое применение которых началось в годы второй мировой войны. Шифроблокнот содержит множество ключей однократного использования, последовательно выбираемых при шифровании сообщений. Предложение Вернама, однако, не решает задачи секретной связи: вместо способа передачи секретного сообщения теперь необходимо найти способ передачи секретного ключа, РАВНОГО ему ПО ДЛИНЕ, т. е. содержащего столько же символов, сколько имеется в открытом тексте.

    В 1949 году статья Клода Шеннона "Теори связи в секретных системах" положила начало научной криптологии. Шеннон показал, что дл некоторого "случайного шифра" количество знаков шифротекста, получив которые криптоаналитик при неограниченных ресурсах может восстановить ключ (и раскрыть шифр),

    H (Z)/(rlog N), (2)

    где H (Z) - энтропия ключа, r - избыточность открытого текста, а N - объем алфавита.

    По эффективности, с которой архиваторы сжимают текстовые файлы, нам хорошо известно, как велика избыточность обычного текста - ведь их работа и состоит в снижении избыточности (причем только на наиболее легко устраняемой ее части). При избыточности обычного текста порядка 0,75 и использовании 56-битового ключа (такого, как предполагает DES), достаточно 11 символов шифротекста дл восстановления ключа при неограниченных ресурсах криптоаналитика.


    Строго говоря, соотношение (2) не доказано для произвольного шифра, но верно для известных частных случаев. Из (2) следует замечательный вывод: работу криптоаналитика можно затруднить не только совершенствованием криптосистемы, но и снижением избыточности открытого текста. Более того, если избыточность открытого текста снизить до нуля, то даже короткий ключ даст шифр, который криптоаналитик не сможет раскрыть.

    Перед шифрованием информацию следует подвергнуть статистическому кодированию (сжатию, архивации). При этом уменьшится объем информации и ее избыточность, повысится энтропия (среднее количество информации, приходящееся на один символ). Так как в сжатом тексте будут отсутствовать повторяющиеся буквы и слова, дешифрование (криптоанализ) затруднится.

    Классификация алгоритмов шифрования

    1. Симметричные (с секретным, единым ключом, одноключевые, single-key).
    1.1. Потоковые (шифрование потока данных):

    с одноразовым или бесконечным ключом (infinite-key cipher);
  • с конечным ключом (система Вернама - Vernam);
  • на основе генератора псевдослучайных чисел (ПСЧ).
  • 1.2. Блочные (шифрование данных поблочно):
    1.2.1. Шифры перестановки (permutation, P-блоки);
    1.2.2. Шифры замены (подстановки, substitution, S-блоки):

    • моноалфавитные (код Цезаря);
    • полиалфавитные (шифр Видженера, цилиндр Джефферсона, диск Уэтстоуна, Enigma);

    1.2.3. составные (таблица 1):

    • Lucipher (фирма IBM, США);
    • DES (Data Encryption Standard, США);
    • FEAL-1 (Fast Enciphering Algoritm, Япония);
    • IDEA/IPES (International Data Encryption Algorithm/
    • Improved Proposed Encryption Standard, фирма Ascom-Tech AG, Швейцария);
    • B-Crypt (фирма British Telecom, Великобритания);
    • ГОСТ 28147-89 (СССР); * Skipjack (США).

    2. Асимметричные (с открытым ключом, public-key):

    • Диффи-Хеллман DH (Diffie, Hellman);
    • Райвест-Шамир-Адлeман RSA (Rivest, Shamir, Adleman);
    • Эль-Гамаль ElGamal.

    Кроме того, есть разделение алгоритмов шифрования на собственно шифры (ciphers) и коды (codes). Шифры работают с отдельными битами, буквами, символами. Коды оперируют лингвистическими элементами (слоги, слова, фразы).

    Симметричные алгоритмы шифрования

    Симметричные алгоритмы шифрования (или криптография с секретными ключами) основаны на том, что отправитель и получатель информации используют один и тот же ключ. Этот ключ должен храниться в тайне и передаваться способом, исключающим его перехват.

    Обмен информацией осуществляется в 3 этапа:

    отправитель передает получателю ключ (в случае сети с несколькими абонентами у каждой пары абонентов должен быть свой ключ, отличный от ключей других пар);
  • отправитель, используя ключ, зашифровывает сообщение, которое пересылаетс получателю;
  • Если для каждого дня и дл каждого сеанса связи будет использоватьс уникальный ключ, это повысит защищенность системы.

    Потоковые шифры

    В потоковых шифрах, т. е. при шифровании потока данных, каждый бит исходной информации шифруется независимо от других с помощью гаммирования.

    Гаммирование - наложение на открытые данные гаммы шифра (случайной или псевдослучайной последовательности единиц и нулей) по определенному правилу. Обычно используется "исключающее ИЛИ", называемое также сложением по модулю 2 и реализуемое в ассемблерных программах командой XOR. Дл расшифровывания та же гамма накладывается на зашифрованные данные.

    При однократном использовании случайной гаммы одинакового размера с зашифровываемыми данными взлом кода невозможен (так называемые криптосистемы с одноразовым или бесконечным ключом). В данном случае "бесконечный" означает, что гамма не повторяется.

    В некоторых потоковых шифрах ключ короче сообщения. Так, в системе Вернама дл телеграфа используется бумажное кольцо, содержащее гамму. Конечно, стойкость такого шифра не идеальна.

    Понятно, что обмен ключами размером с шифруемую информацию не всегда уместен. Поэтому чаще используют гамму, получаемую с помощью генератора псевдослучайных чисел (ПСЧ). В этом случае ключ - порождающее число (начальное значение, вектор инициализации, initializing value, IV) дл запуска генератора ПСЧ. Каждый генератор ПСЧ имеет период, после которого генерируема последовательность повторяется. Очевидно, что период псевдослучайной гаммы должен превышать длину шифруемой информации.

    Генератор ПСЧ считается корректным, если наблюдение фрагментов его выхода не позволяет восстановить пропущенные части или всю последовательность при известном алгоритме, но неизвестном начальном значении .

    При использовании генератора ПСЧ возможны несколько вариантов :

    Побитовое шифрование потока данных. Цифровой ключ используется в качестве начального значения генератора ПСЧ, а выходной поток битов суммируется по модулю 2 с исходной информацией. В таких системах отсутствует свойство распространения ошибок.
  • Побитовое шифрование потока данных с обратной связью (ОС) по шифртексту. Такая система аналогична предыдущей, за исключением того, что шифртекст возвращается в качестве параметра в генератор ПСЧ. Характерно свойство распространения ошибок. Область распространени ошибки зависит от структуры генератора ПСЧ.
  • Побитовое шифрование потока данных с ОС по исходному тексту. Базой генератора ПСЧ являетс исходная информация. Характерно свойство неограниченного распространения ошибки.
  • Побитовое шифрование потока данных с ОС по шифртексту и по исходному тексту.
  • Блочные шифры

    При блочном шифровании информация разбивается на блоки фиксированной длины и шифруется поблочно. Блочные шифры бывают двух основных видов:

    шифры перестановки (transposition, permutation, P-блоки);
  • шифры замены (подстановки, substitution, S-блоки).
  • Шифры перестановок переставляют элементы открытых данных (биты, буквы, символы) в некотором новом порядке. Различают шифры горизонтальной, вертикальной, двойной перестановки, решетки, лабиринты, лозунговые и др.

    Шифры замены заменяют элементы открытых данных на другие элементы по определенному правилу. Paзличают шифры простой, сложной, парной замены, буквенно-слоговое шифрование и шифры колонной замены. Шифры замены делятся на две группы:

    моноалфавитные (код Цезаря) ;
  • полиалфавитные (шифр Видженера, цилиндр Джефферсона, диск Уэтстоуна, Enigma).
  • В моноалфавитных шифрах замены буква исходного текста заменяется на другую, заранее определенную букву. Например в коде Цезаря буква заменяется на букву, отстоящую от нее в латинском алфавите на некоторое число позиций. Очевидно, что такой шифр взламываетс совсем просто. Нужно подсчитать, как часто встречаются буквы в зашифрованном тексте, и сопоставить результат с известной для каждого языка частотой встречаемости букв.

    В полиалфавитных подстановках дл замены некоторого символа исходного сообщения в каждом случае его появления последовательно используются различные символы из некоторого набора. Понятно, что этот набор не бесконечен, через какое-то количество символов его нужно использовать снова. В этом слабость чисто полиалфавитных шифров.

    В современных криптографических системах, как правило, используют оба способа шифрования (замены и перестановки). Такой шифратор называют составным (product cipher). Oн более стойкий, чем шифратор, использующий только замены или перестановки.

    Блочное шифрование можно осуществлять двояко :

    Без обратной связи (ОС). Несколько битов (блок) исходного текста шифруютс одновременно, и каждый бит исходного текста влияет на каждый бит шифртекста. Однако взаимного влияния блоков нет, то есть два одинаковых блока исходного текста будут представлены одинаковым шифртекстом. Поэтому подобные алгоритмы можно использовать только для шифрования случайной последовательности битов (например, ключей). Примерами являются DES в режиме ECB и ГОСТ 28147-89 в режиме простой замены.
  • С обратной связью. Обычно ОС организуется так: предыдущий шифрованный блок складывается по модулю 2 с текущим блоком. В качестве первого блока в цепи ОС используетс инициализирующее значение. Ошибка в одном бите влияет на два блока - ошибочный и следующий за ним. Пример - DES в режиме CBC.
  • Генератор ПСЧ может применяться и при блочном шифровании :

    1. Поблочное шифрование потока данных. Шифрование последовательных блоков (подстановки и перестановки) зависит от генератора ПСЧ, управляемого ключом.
    2. Поблочное шифрование потока данных с ОС. Генератор ПСЧ управляется шифрованным или исходным текстом или обоими вместе.

    Весьма распространен федеральный стандарт США DES (Data Encryption Standard) , на котором основан международный стандарт ISO 8372-87. DES был поддержан Американским национальным институтом стандартов (American National Standards Institute, ANSI) и рекомендован для применения Американской ассоциацией банков (American Bankers Association, ABA). DES предусматривает 4 режима работы:

    • ECB (Electronic Codebook) электронный шифрблокнот;
    • CBC (Cipher Block Chaining) цепочка блоков;
    • CFB (Cipher Feedback) обратная связь по шифртексту;
    • OFB (Output Feedback) обратная связь по выходу.

    ГОСТ 28147-89 - отечественный стандарт на шифрование данных . Стандарт включает три алгоритма зашифровывани (расшифровывания) данных: режим простой замены, режим гаммирования, режим гаммирования с обратной связью - и режим выработки имитовставки.

    С помощью имитовставки можно зафиксировать случайную или умышленную модификацию зашифрованной информации. Вырабатывать имитовставку можно или перед зашифровыванием (после расшифровывания) всего сообщения, или одновременно с зашифровыванием (расшифровыванием) по блокам. При этом блок информации шифруется первыми шестнадцатью циклами в режиме простой замены, затем складывается по модулю 2 со вторым блоком, результат суммирования вновь шифруется первыми шестнадцатью циклами и т. д.

    Алгоритмы шифрования ГОСТ 28147-89 обладают достоинствами других алгоритмов дл симметричных систем и превосходят их своими возможностями. Так, ГОСТ 28147-89 (256-битовый ключ, 32 цикла шифрования) по сравнению с такими алгоритмами, как DES (56-битовый ключ, 16 циклов шифрования) и FEAL-1 (64-битовый ключ, 4 цикла шифрования) обладает более высокой криптостойкостью за счет более длинного ключа и большего числа циклов шифрования.

    Следует отметить, что в отличие от DES, у ГОСТ 28147-89 блок подстановки можно произвольно изменять, то есть он является дополнительным 512-битовым ключом.

    Алгоритмы гаммирования ГОСТ 28147-89 (256-битовый ключ, 512-битовый блок подстановок, 64-битовый вектор инициализации) превосходят по криптостойкости и алгоритм B-Crypt (56-битовый ключ, 64-битовый вектор инициализации).

    Достоинствами ГОСТ 28147-89 являютс также наличие защиты от навязывания ложных данных (выработка имитовставки) и одинаковый цикл шифрования во всех четырех алгоритмах ГОСТа.

    Блочные алгоритмы могут использоваться и для выработки гаммы. В этом случае гамма вырабатывается блоками и поблочно складывается по модулю 2 с исходным текстом. В качестве примера можно назвать B-Crypt, DES в режимах CFB и OFB, ГОСТ 28147-89 в режимах гаммирования и гаммирования c обратной связью.

    Аcимметричные алгоритмы шифрования

    В асимметричных алгоритмах шифрования (или криптографии с открытым ключом) для зашифровывания информации используют один ключ (открытый), а для расшифровывания - другой (секретный). Эти ключи различны и не могут быть получены один из другого.

    Схема обмена информацией такова:

    получатель вычисляет открытый и секретный ключи, секретный ключ хранит в тайне, открытый же делает доступным (сообщает отправителю, группе пользователей сети, публикует);
  • отправитель, используя открытый ключ получателя, зашифровывает сообщение, которое пересылается получателю;
  • получатель получает сообщение и расшифровывает его, используя свой секретный ключ.
  • RSA

    Защищен патентом США N 4405829. Разработан в 1977 году в Массачусетском технологическом институте (США). Получил название по первым буквам фамилий авторов (Rivest, Shamir, Adleman). Криптостойкость основана на вычислительной сложности задачи разложени большого числа на простые множители.

    ElGamal

    Разработан в 1985 году. Назван по фамилии автора - Эль-Гамаль. Используется в стандарте США на цифровую подпись DSS (Digital Signature Standard). Криптостойкость основана на вычислительной сложности задачи логарифмирования целых чисел в конечных полях.

    Сравнение cимметричных и аcимметричных алгоритмов шифрования

    В асимметричных системах необходимо применять длинные ключи (512 битов и больше). Длинный ключ резко увеличивает врем шифрования. Кроме того, генерация ключей весьма длительна. Зато распределять ключи можно по незащищенным каналам.

    В симметричных алгоритмах используют более короткие ключи, т. е. шифрование происходит быстрее. Но в таких системах сложно распределение ключей.

    Поэтому при проектировании защищенной системы часто применяют и cимметричные, и аcимметричные алгоритмы. Так как система с открытыми ключами позволяет распределять ключи и в симметричных системах, можно объединить в системе передачи защищенной информации асимметричный и симметричный алгоритмы шифрования. С помощью первого рассылать ключи, вторым же - собственно шифровать передаваемую информацию .

    Обмен информацией можно осуществлять следующим образом:

    получатель вычисляет открытый и секретный ключи, секретный ключ хранит в тайне, открытый же делает доступным;
  • отправитель, используя открытый ключ получателя, зашифровывает сеансовый ключ, который пересылается получателю по незащищенному каналу;
  • получатель получает сеансовый ключ и расшифровывает его, используя свой секретный ключ;
  • отправитель зашифровывает сообщение сеансовым ключом и пересылает получателю;
  • получатель получает сообщение и расшифровывает его.
  • Надо заметить, что в правительственных и военных системах связи используют лишь симметричные алгоритмы, так как нет строго математического обосновани стойкости систем с открытыми ключами, как, впрочем, не доказано и обратное.

    Проверка подлинности информации. Цифровая подпись

    При передаче информации должны быть обеспечены вместе или по отдельности:

    • Конфиденциальность (privacy) - злоумышленник не должен иметь возможности узнать содержание передаваемого сообщения.
    • Подлинность (authenticity), которая включает два понятия:
    1. целостность (integrity) - сообщение должно быть защищено от случайного или умышленного изменения;
    2. идентификация отправителя (проверка авторства) - получатель должен иметь возможность проверить, кем отправлено сообщение.

    Шифрование может обеспечить конфиденциальность, а в некоторых системах и целостность.

    Целостность сообщения проверяетс вычислением контрольной функции (check function) от сообщения - некоего числа небольшой длины. Эта контрольная функция должна с высокой вероятностью изменяться даже при малых изменениях сообщения (удаление, включение, перестановки или переупорядочивание информации). Называют и вычисляют контрольную функцию по-разному:

    код подлинности сообщения (Message Authentical Code, MAC);
  • квадратичный конгруэнтный алгоритм (Quadratic Congruentical Manipulation Detection Code, QCMDС);
  • Manipulation Detection Code (MDС);
  • Message Digest Algorithm (MD5);
  • контрольная сумма;
  • символ контроля блока (Block Check Character, BCC);
  • циклический избыточный код (ЦИК, Cyclic Redundancy Check, CRC);
  • хеш-функция (hash);
  • имитовставка в ГОСТ 28147-89;
  • алгоритм с усечением до n битов (n-bit Algorithm with Truncation).
  • При вычислении контрольной функции может использоваться какой-либо алгоритм шифрования. Возможно шифрование самой контрольной суммы.

    Широко применяется цифровая подпись (цифровое дополнение к передаваемой информации, гарантирующее целостность последней и позволяющее проверить ее авторство). Известны модели цифровой подписи (digital signature) на основе алгоритмов симметричного шифрования, но при использовании систем с открытыми ключами цифровая подпись осуществляется более удобно.

    Для использования алгоритма RSA сообщение следует сжать функцией хешировани (алгоритм MD5 - Message Digest Algorithm) до 256-битового хеша (H). Сигнатура сообщения S вычисляется следующим образом:

    d
    S = H mod n

    Сигнатура пересылаетс вместе с сообщением.

    Процесс идентификации заключается в получении хеш-функции сообщения (H") и сравнении с

    e
    H = S mod n

    где H - хеш сообщения,

    S - его сигнатура,

    d - секретный ключ,
    e - открытый ключ.

    Проверке подлинности посвящены стандарты:

    • проверка подлинности (аутентификация, authentication) - ISO 8730-90, ISO/IES 9594-90 и ITU X.509;
    • целостность - ГОСТ 28147-89, ISO 8731-90;
    • цифровая подпись - ISO 7498, P 34.10-94 (Россия), DSS (Digital Signature Standard, США).

    ISO - Международная организация по стандартизации /МОС/,
    ITU - Международный союз электросвязи /МСЭ/.

    Реализаци алгоритмов шифрования

    Алгоритмы шифровани реализуются программными или аппаратными средствами. Есть великое множество чисто программных реализаций различных алгоритмов. Из-за своей дешевизны (некoторые и вовсе бесплатны), а также все большего быстродействи процессоров ПЭВМ, простоты работы и безотказности они весьма конкурентоспособны. Широко известна программа Diskreet из пакета Norton Utilities, реализующая DES.

    Нельзя не упомянуть пакет PGP (Pretty Good Privacy, версия 2.1, автор Philip Zimmermann), в котором комплексно решены практически все проблемы защиты передаваемой информации. Применены сжатие данных перед шифрованием, мощное управление ключами, симметричный (IDEA) и асимметричный (RSA) алгоритмы шифрования, вычисление контрольной функции для цифровой подписи, надежная генерация ключей.

    Публикации журнала "Монитор" с подробными описаниями различных алгоритмов и соответствующими листингами дают возможность каждому желающему написать свою программу (или воспользоваться готовым листингом).

    Аппаратная реализация алгоритмов возможна с помощью специализированных микросхем (производятся кристаллы для алгоритмов DH, RSA, DES, Skipjack, ГОСТ 28147-89) или с использованием компонентов широкого назначения (ввиду дешевизны и высокого быстродействия перспективны цифровые сигнальные процессоры - ЦСП, Digital Signal Processor, DSP).

    Среди российских разработок следует отметить платы "Криптон" (фирма "Анкад") и "Грим" (методология и алгоритмы фирмы "ЛАН-Крипто", техническая разработка НПЦ "ЭЛиПС") .

    "Криптон" - одноплатные устройства, использующие криптопроцессоры (специализированные 32-разрядные микроЭВМ, которые также называются "блюминг"). Блюминги аппаратно реализуют алгоритмы ГОСТ 28147-89, они состоят из вычислителя и ОЗУ дл хранения ключей. Причем в криптопроцессоре есть три области для хранения ключей, что позволяет строить многоуровневые ключевые системы.

    Для большей надежности шифровани одновременно работают два криптопроцессора, и блок данных в 64 битов считается правильно зашифрованным, только если совпадает информаци на выходе обоих блюмингов. Скорость шифрования - 250 КБ/c.

    Кроме двух блюмингов на плате расположены:

    контроллер сопряжения с шиной компьютера (за исключением "Криптон-ЕС" платы рассчитаны на работу с шиной ISA);
  • BIOS платы, предназначенный дл осуществления интерфейса с компьютером и выполняющий самотестирование устройства и ввод ключей в криптопроцессоры;
  • датчик случайных чисел (ДСЧ) дл выработки ключей шифрования, выполненный на шумовых диодах.
  • Выпускаются следующие разновидности плат "Криптон":

    • "Криптон-ЕС" предназначена дл ПЭВМ серии ЕС 1841-1845;
    • "Криптон-3";
    • "Криптон-4" (сокращены габаритные размеры за счет перемещения ряда дискретных элементов в базовые кристаллы, повышена скoрость обмена благодаря внутреннему буферу на 8 байт);
    • "Криптон-ИК" дополнительно оснащена контроллером ИК (интеллектуальна карточка, смарт-карта, smart card).

    В устройствах "Криптон-ЕС", "Криптон-3", "Криптон-4" ключи хранятся в виде файла на дискете. В "Криптон-ИК" ключи находятся на ИК, что затрудняет подделку и копирование.

    В плате "Грим" используютс цифровые сигнальные процессоры фирмы Analog Devices ADSP-2105 и ADSP-2101, что дает скорость шифровани соответственно 125 и 210 КБ/c. На плате есть физический ДСЧ и ПЗУ с программами начального теста, проверки прав доступа, загрузки и генерации ключей. Ключи хранятся на нестандартно форматированной дискете. Плата реализует алгоритмы ГОСТ 28147-89 и цифровой подписи.

    Для защиты информации, передаваемой по каналам связи, служат устройства канального шифрования, которые изготовляются в виде интерфейсной карты или автономного модуля. Скорость шифрования различных моделей от 9600 бит/с до 35 Мбит/c.

    В заключение заметим, что шифрование информации не является панацеей. Его следует рассматривать только как один из методов защиты информации и применять обязательно в сочетании с законодательными, организационными и другими мерами.

    Криптология с открытым ключом

    Борис Оболикшто

    Казалось бы, толчок, данный Шенноном, должен был вызвать обвал результатов в научной криптологии. Но этого не произошло. Только бурное развитие телекоммуникаций, удаленного доступа к ЭВМ при несовершенстве существовавших криптосистем с секретным ключом вызвало к жизни следующий и, пожалуй, самый интересный этап криптологии, отсчет которому ведут от появившейся в ноябре 1976 года статьи Уитфилда Диффи и Марти E. Хеллмана "Новые направления в криптографии". Сам У. Диффи датирует получение опубликованных в ноябре 1976 года результатов маем того же года; таким образом, у нас есть повод с ма до ноября отмечать ДВАДЦАТИЛЕТНИЙ ЮБИЛЕЙ криптологии с открытым ключом.

    Одна из проблем, которая осталась неразрешенной в традиционной криптографии, - распространение секретных ключей. Иде передавать "секретный" ключ по открытому каналу кажется на первый взгляд безумной, но если, отказавшись от совершенной секретности, ограничиться практической стойкостью, то можно придумать способ обмена ключами.

    Первым из получивших распространение способов оказался экспоненциальный ключевой обмен. Суть его в следующем:

    • Алиса и Боб (привлечение в качестве сторон не абстрактных "А" и "Б", а симпатичных Алисы и Боба, стало традицией в этой области криптологии) выбирают случайные числа Хa и Хb соответственно.
    • Алиса передает Бобу Ya =aXa (mod q) , а Боб Алисе - Yb =aXb (mod q) .

    Здесь a - так называемый примитивный элемент конечного поля Галуа GF (q), замечательное для нас свойство которого заключается в том, что его степени дают все ненулевые значени элементов поля. В качестве секретного ключа используется значение

    Ya =aXaXb (mod q) ,

    которое Алиса получает возведением переданного Бобом числа в степень Xa , известную только ей, а Боб - полученного от Алисы числа в известную только ему степень Хb . Криптоаналитик вынужден вычислять логарифм по крайней мере одного из передаваемых чисел.

    Устойчивость экспоненциального ключевого обмена базируется на так называемой односторонности функции возведения в степень: вычислительная сложность получения Ya из Xa при q длиной 1000 битов - порядка 2000 умножений 1000 битовых чисел, в то время как обратная операция потребует примерно 1030 операций. ОДНОСТОРОННИЕ функции, обладающие подобной асимметрией вычислительной сложности прямой и обратной задачи, играют ведущую роль в криптографии с открытым ключом.

    Еще более интересна односторонн функция с потайным ходом ("лазейкой"). Иде состоит в том, чтобы построить функцию, обратить которую можно только зная некоторую "лазейку" - секретный ключ. Тогда параметры функции служат открытым ключом, который Алиса может передать по незащищенному каналу Бобу; Боб, используя полученный открытый ключ, выполняет шифрование (вычисление прямой функции) и передает по тому же каналу результат Алисе; Алиса, зная "лазейку" (секретный ключ), легко вычисляет обратную функцию, тогда как криптоаналитик, не зная секретного ключа, обречен на решение намного более сложной задачи.

    Такую функцию в 1976 году удалось построить Р. Мерклю (R.C. Merkle) на основе задачи об укладке ранца. Сама по себе задача - односторонняя: зна подмножество грузов, уложенных в ранец, легко подсчитать суммарный вес, но зная вес, непросто определить подмножество грузов. В нашем случае использовался одномерный вариант задачи: вектор грузов и сумма компонентов его подвекторов. Встроив "лазейку", удалось получить так называемую ранцевую систему Меркля-Хелмана. Первая криптосистема с открытым ключом заработала, и Меркль предложил $100 тому, кто сможет ее раскрыть.

    Награда досталась А. Шамиру (Adi Shamir) шесть лет спустя после публикации им в марте 1982 года сообщения о раскрытии ранцевой системы Меркля-Хелмана с одной итерацией. На конференции Crypto"82 Л. Адлман (L. Adleman) продемонстрировал на компьютере Apple II раскрытие ранцевой системы. Заметим, что Шамир не построил способ обращени задачи - получения значения секретного ключа, он сумел построить ключ, не обязательно равный секретному, но позволяющий раскрыть шифр. В этом таится одна из наибольших опасностей дл криптографии с открытым ключом: нет строгого доказательства односторонности используемых алгоритмов, т. е. никто не гарантирован от возможности нахождения способа дешифрования, вероятно, и не требующего решения обратной задачи, высокая сложность которой позволяет надеяться на практическую стойкость шифра. Хорошо, если раскрытие той или иной системы проведет ученый с мировым именем (в 1982 году А. Шамир уже был известен как один из авторов системы RSA). А если это удастся нечестолюбивому хакеру?

    В заключение драмы о ранцевой системе упомянем еще об одном пари, которое Меркль заключил с желающими раскрыть усовершенствованную систему с многими итерациями на сумму $1000. И эту сумму пришлось заплатить. Ее получил Э. Брикелл, раскрыв летом 1984 года систему с сорока итерациями и со ста посылками за час работы Cray-1.

    Значительно более удачна на сегодняшний день судьба системы RSA, названной так по первым буквам фамилий ее авторов Р. Ривеста (Ronald Rivest) и уже знакомых нам А. Шамира и Л. Адлмана. Кстати, именно первому систематическому изложению алгоритма RSA обязаны своим появлением на свет Алиса и Боб. С их "помощью" авторы в 1977 году описали систему на основе односторонних свойств функции разложения на простые множители (умножать просто, а разлагать - нет).

    Развитие криптологии с открытым ключом позволило криптологическим системам довольно быстро найти широкое коммерческое применение. Но интенсивное использование криптографии не обходится без "накладок". Время от времени мы узнаем о неприятностях в той или иной системе защиты. Последним нашумевшим в мире происшествием стал взлом системы Kerberos. Система эта, разработанная в середине 80-х годов, довольно популярна в мире, и ее взлом вызвал немалое беспокойство пользователей.

    В случае с Kerberos неприятность заключалась не в алгоритме шифрования, а в способе получени случайных чисел, т. е. в методе реализации алгоритма. Когда в октябре прошлого года пришло известие о просчетах в системе генерации случайных чисел в программных продуктах Netscape, обнаруженных студентами университета Беркли, Стивен Лодин обнаружил подобную неприятность в Kerberos. Совместно с Брайаном Доулом он сумел найти брешь и в системе Kerberos. Действующие лица этой истории - не дилетанты. Выпускники университета Purdue (штат Иллинойс) сотрудничали с лабораторией COAST (Computer Operations, Audit, and Security Technology), профессионально занятой вопросами компьютерной безопасности и руководимой проф. Спаффордом, который является также основателем PCERT (Purdue Computer Emergency Response Team) - университетского отряда "быстрого реагирования" на компьютерные ЧП. PCERT, в свою очередь, член аналогичной международной организации FIRST (Forum of Incident Response Teams). Как видим, мину нашли саперы, а это внушает надежду, что пользователи криптосистем не останутся беззащитными даже в случае выявлени недоработок.

    Характерно содержание первого обращени к прессе (от 16 февраля 1996 г.), которое от лица первооткрывателей сделал проф. Спаффорд. В нем, наряду с информацией о ненадежности системы паролей и возможностях ее взлома в течение пяти минут, говорится о задержке дальнейшего распространения технической информации до тех пор, пока разработчиками не будут внесены коррективы препятствующие несанкционированному доступу.

    Не обошли ошибки и наши пенаты. К счастью, есть в наших краях профессионалы, способные своевременно найти и показать слабые места системы защиты. Еще месяц не прошел с тех пор, как специалистами киевского ООО "Финтроник" П.В. Лесковым и В.В. Татьяниным продемонстрированы недостатки одной из популярных банковских систем защиты: время вскрытия шифротекстов составило менее 6 минут, а время, необходимое дл неконтролируемого нарушения целостности документа (обход системы аутентификации), - менее 5 минут. И здесь нам, читатель, также придетс подождать, пока разработчики внесут необходимые изменения. А уж затем мы сможем рассказать подробнее о том, как и что было сделано.

    Литература:

    1. Водолазский В. Коммерческие системы шифрования: основные алгоритмы и их реализация. Часть 1. // Монитор. - 1992. - N 6-7. - c. 14 - 19.
    2. Игнатенко Ю.И. Как сделать так, чтобы?.. // Мир ПК. - 1994. - N 8. - c. 52 - 54.
    3. Ковалевский В., Максимов В. Криптографические методы. // КомпьютерПресс. - 1993. - N 5. - c. 31 - 34.
    4. Мафтик С. Механизмы защиты в сетях ЭВМ. - М.: Мир, 1993.
    5. Спесивцев А.В., Вегнер В.А., Крутяков А.Ю. и др. Защита информации в персональных ЭВМ. - M.: Радио и связь, 1992.
    6. Сяо Д., Керр Д., Мэдник С. Защита ЭВМ. - М.: Мир, 1982.
    7. Шмелева А. Грим - что это? // Hard"н"Soft. - 1994. - N 5.
    8. ГОСТ 28147-89. Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования.

    Алгоритм шифрования данных DES (Data Encryption Standard) был опубликован в 1977 г. и остается пока распространенным блочным симметричным алгоритмом, используемым в системах защиты коммерческой информации.

    Алгоритм DES построен в соответствии с методологией сети Фейстеля и состоит из чередующейся последовательности перестановок и подстановок. Алгоритм DES осуществляет шифрование 64-битовых блоков данных с помощью 64-битового ключа, в котором значащими являются 56 бит (остальные 8 - проверочные биты для контроля на четность).

    Процесс шифрования заключается в начальной перестановке битов 64-битового блока, 16 циклах (раундах) шифрования и, наконец, в конечной перестановке битов (рис. 6.2).

    Рис. 6.2.

    Расшифровывание в DES является операцией, обратной шифрованию, и выполняется путем повторения операций шифрования в обратной последовательности.

    Основные достоинства алгоритма DES:

    • используется только один ключ длиной 56 бит;
    • относительная простота алгоритма обеспечивает высокую скорость обработки;
    • зашифровав сообщение с помощью одного пакета программ, для расшифровки можно использовать любой другой пакет программ, соответствующий алгоритму DES;
    • криптостойкость алгоритма вполне достаточна для обеспечения информационной безопасности большинства коммерческих приложений.

    Современная микропроцессорная техника позволяет за достаточно приемлемое время взламывать симметричные блочные шифры с длиной ключа 40 бит. Для такого взламывания используется метод полного перебора - тотального опробования всех возможных значений ключа (метод «грубой силы»). До недавнего времени DES считался относительно безопасным алгоритмом шифрования.

    Существует много способов комбинирования блочных алгоритмов для получения новых более стойких алгоритмов. Одним из таких способов является многократное шифрование - использование блочного алгоритма несколько раз с разными ключами для шифрования одного и того же блока открытого текста. При трехкратном шифровании можно применить три различных ключа.

    Алгоритм 3-DES (Triple DES - тройной DES) используется в ситуациях, когда надежность алгоритма DES считается недостаточной.

    Сегодня все шире используются два современных криптостойких алгоритма шифрования: отечественный стандарт шифрования ГОСТ 28147-89 и новый криптостандарт США - AES (Advanced Encryption Standard).

    Стандарт шифрования ГОСТ 28147-89 предназначен для аппаратной и программной реализации, удовлетворяет криптографическим требованиям и не накладывает ограничений на степень секретности защищаемой информации. Алгоритм шифрования данных, определяемый ГОСТ 28147-89, представляет собой 64-битовый блочный алгоритм с 256-битовым ключом.

    Данные, подлежащие зашифрованию, разбивают на 64-раз-рядные блоки. Эти блоки разбиваются на два субблока N x и N 2 по 32 бит (рис. 6.3). Субблок /V, обрабатывается определенным образом, после чего его значение складывается со значением субблока N 2 (сложение выполняется по модулю 2, т. е. применяется логическая операция XOR - «исключающее или»), а затем


    Рис. 6.3.

    субблоки меняются местами. Данное преобразование выполняется определенное число раз («раундов») - 16 или 32, в зависимости от режима работы алгоритма.

    В каждом раунде выполняются две операции.

    Первая операция - наложение ключа. Содержимое субблока /V, складывается по модулю 2 32 с 32-битовой частью ключа К х. Полный ключ шифрования представляется в виде конкатенации 32-битовых подключей: К 0 , К { , К 2 , К 3 , К 4 , К 5 , К 6 , К 7 . В процессе шифрования используется один из этих подключей - в зависимости от номера раунда и режима работы алгоритма.

    Вторая операция - табличная замена. После наложения ключа субблок N { разбивается на 8 частей по 4 бит, значение каждой из которых заменяется в соответствии с таблицей замены для данной части субблока. Затем выполняется побитовый циклический сдвиг субблока влево на 11 бит.

    Табличные замены. Блок подстановки 5-box (Substitution box) часто используются в современных алгоритмах шифрования, поэтому стоит пояснить, как организуется подобная операция.

    Блок подстановки 5-Ьох состоит из восьми узлов замены (5-блоков замены) 5, S 2 , ..., 5 8 с памятью 64 бит каждый. Поступающий на блок подстановки S 32-битовый вектор разбивают на 8 последовательно идущих 4-битовых векторов, каждый из которых преобразуется в 4-битовый вектор соответствующим узлом замены. Каждый узел замены можно представить в виде таблицы-перестановки 16 4-битовых двоичных чисел в диапазоне 0000... 1111. Входной вектор указывает адрес строки в таблице, а число в этой строке является выходным вектором. Затем 4-битовые выходные векторы последовательно объединяют в 32-би-товый вектор. Узлы замены (таблицы-перестановки) представляют собой ключевые элементы, которые являются общими для сети ЭВМ и редко изменяются. Эти узлы замены должны сохраняться в секрете.

    Алгоритм, определяемый ГОСТ 28147-89, предусматривает четыре режима работы: простой замены, гаммирования, гаммиро-вания с обратной связью и генерации имитоприставок. В них используется одно и то же описанное выше шифрующее преобразование, но, поскольку назначение режимов различно, осуществляется это преобразование в каждом из них по-разному.

    В режиме простой замены для зашифровывания каждого 64-битового блока информации выполняются 32 описанных выше раунда. При этом 32-битовые подключи используются в следующей последовательности:

    К 0 , К { , К 2 , К 3 , К 4 , К 5 , К 6 , К 7 , К 0 , /Г, и т. д. - в раундах с 1-го по 24-й;

    К 7 , К ь, К 5 , К 4 , К 3 , К 2 , К х, К 0 - в раундах с 25-го по 32-й.

    Расшифровывание в данном режиме проводится точно так же, но с несколько другой последовательностью применения подключей:

    К 0 , АГ, К 2 , К 3 , К 4 , К 5 , К ь, К 7 - в раундах с 1-го по 8-й;

    К 7 , К 6 , К 5 , К 4 , К 3 , К 2 , К { , К 0 , К 7 , К ь и т. д. - в раундах с 9-го по 32-й.

    Все блоки шифруются независимо друг от друга, т. е. результат зашифровывания каждого блока зависит только от его содержимого (соответствующего блока исходного текста). При наличии нескольких одинаковых блоков исходного (открытого) текста соответствующие им блоки шифртекста тоже будут одинаковы, что дает дополнительную полезную информацию для пытающегося вскрыть шифр криптоаналитика. Поэтому данный режим применяется в основном для шифрования самих ключей шифрования (очень часто реализуются многоключевые схемы, в которых по ряду соображений ключи шифруются друг на друге). Для шифрования собственно информации предназначены два других режима работы - гаммирования и гаммирования с обратной связью.

    В режиме гаммирования каждый блок открытого текста побитно складывается по модулю 2 с блоком гаммы шифра размером 64 бит. Гамма шифра - это специальная последовательность, которая получается в результате определенных операций с регистрами N 1 и Ы 2 (рис. 6.9):

    • 1. В регистры N^ и 1У 2 записывается их начальное заполнение - 64-битовая величина, называемая синхропосылкой.
    • 2. Выполняется зашифровывание содержимого регистров N 1 и М 2 (в данном случае - синхропосылки) в режиме простой замены.
    • 3. Содержимое регистра N^ складывается по модулю (2 32 - 1) с константой С, = 2 24 + 2 16 + 2 8 + 2 4 , а результат сложения записывается в регистр N 1 .
    • 4. Содержимое регистра УУ 2 складывается по модулю 232 с константой С 2 = 2 24 + 2 16 + 2 8 + 1, а результат сложения записывается в регистр УУ 2 .
    • 5. Содержимое регистров N , и Ы 2 подается на выход в качестве 64-битового блока гаммы шифра (в данном случае N^ и УУ 2 образуют первый блок гаммы).

    Если необходим следующий блок гаммы (т. е. необходимо продолжить зашифровывание или расшифровывание), выполняется возврат к операции 2.

    Для расшифровывания гамма вырабатывается аналогичным образом, а затем к битам зашифрованного текста и гаммы снова применяется операция Х(Ж. Поскольку эта операция обратима, в случае правильно выработанной гаммы получается исходный текст (табл. 6.1).

    Таблица 6.1. Зашифровывание и расшифровывание в режиме гаммирования

    Для выработки нужной для расшифровки гаммы шифра у пользователя, расшифровывающего криптограмму, должен быть тот же ключ и то же значение синхропосылки, которые применялись при зашифровывании информации. В противном случае получить исходный текст из зашифрованного не удастся.

    В большинстве реализаций алгоритма ГОСТ 28147-89 синхропосылка не секретна, однако есть системы, где синхропосылка такой же секретный элемент, как и ключ шифрования. Для таких систем эффективная длина ключа алгоритма (256 бит) увеличивается еще на 64 бит секретной синхропосылки, которую также можно рассматривать как ключевой элемент.

    В режиме гаммирования с обратной связью для заполнения регистров Л", и ІУ 2 , начиная со 2-го блока, используется не предыдущий блок гаммы, а результат зашифрования предыдущего блока открытого текста (рис. 6.4). Первый же блок в данном режиме генерируется полностью аналогично предыдущему.

    Рассматривая режим генерации имитоприставок, следует определить понятие предмета генерации. Имитоприставка - это криптографическая контрольная сумма, вычисляемая с исполь-

    Рис. 6.4.

    зованием ключа шифрования и предназначенная для проверки целостности сообщений. При генерации имитоприставки выполняются следующие операции: первый 64-битовый блок массива информации, для которого вычисляется имитоприставка, записывается в регистры ^ и А^ 2 и зашифровывается в сокращенном режиме простой замены (выполняются первые 16 раундов из 32). Полученный результат суммируется по модулю 2 со следующим блоком информации с сохранением результата в Л", и Ы 2 .

    Цикл повторяется до последнего блока информации. Получившееся в результате этих преобразований 64-битовое содержимое регистров Л^, и А^ 2 или его часть и называется имитопри-ставкой. Размер имитоприставки выбирается, исходя из требуемой достоверности сообщений: при длине имитоприставки г бит вероятность, что изменение сообщения останется незамеченным, равна 2~ г.

    Чаще всего используется 32-битовая имитоприставка, т. е. половина содержимого регистров. Этого достаточно, поскольку, как любая контрольная сумма, имитоприставка предназначена прежде всего для защиты от случайных искажений информации. Для защиты же от преднамеренной модификации данных применяются другие криптографические методы - в первую очередь электронная цифровая подпись.

    При обмене информацией имитоприставка служит своего рода дополнительным средством контроля. Она вычисляется для открытого текста при зашифровывании какой-либо информации и посылается вместе с шифртекстом. После расшифровывания вычисляется новое значение имитоприставки, которое сравнивается с присланной. Если значения не совпадают, значит шифр-текст был искажен при передаче или при расшифровывании использовались неверные ключи. Особенно полезна имитоприставка для проверки правильности расшифровывания ключевой информации при использовании многоключевых схем.

    Алгоритм ГОСТ 28147-89 является очень стойким алгоритмом - в настоящее время для его раскрытия не предложено более эффективных методов, чем упомянутый выше метод «грубой силы». Его высокая стойкость достигается в первую очередь за счет большой длины ключа - 256 бит. При использовании секретной синхропосылки эффективная длина ключа увеличивается до 320 бит, а засекречивание таблицы замен прибавляет дополнительные биты. Кроме того, криптостойкость зависит от количества раундов преобразований, которых по ГОСТ 28147-89 должно быть 32 (полный эффект рассеивания входных данных достигается уже после 8 раундов).

    Стандарт шифрования AES. В 1997 г. Американский институт стандартизации NIST (National Institute of Standards & Technology) объявил конкурс на новый стандарт симметричного криптоалгоритма, названного AES (Advanced Encryption Standard). К его разработке были подключены самые крупные центры криптологии всего мира. Победитель этого соревнования фактически становился мировым криптостандартом на ближайшие 10-20 лет.

    К криптоалгоритмам - кандидатам на новый стандарт AES - были предъявлены следующие требования:

    • алгоритм должен быть симметричным;
    • алгоритм должен быть блочным шифром;
    • алгоритм должен иметь длину блока 128 бит и поддерживать три длины ключа: 128, 192 и 256 бит.

    Дополнительно разработчикам криптоалгоритмов рекомендовалось:

    • использовать операции, легко реализуемые как аппаратно (в микрочипах), так и программно (на персональных компьютерах и серверах);
    • ориентироваться на 32-разрядные процессоры;
    • не усложнять без необходимости структуру шифра, для того чтобы все заинтересованные стороны были в состоянии самостоятельно провести независимый криптоанализ алгоритма и убедиться, что в нем не заложено каких-либо недокументированных возможностей.

    Итоги конкурса были подведены в октябре 2000 г. - победителем был объявлен алгоритм Rijndael, разработанный двумя криптографами из Бельгии, Винсентом Риджменом (Vincent Rijmen) и Джоан Даймен (Joan Daemen). Алгоритм Rijndael стал новым стандартом шифрования данных AES .

    Алгоритм AES не похож на большинство известных алгоритмов симметричного шифрования, структура которых носит название «сеть Фейстеля» и аналогична российскому ГОСТ 28147-89. В отличие от отечественного стандарта шифрования, алгоритм AES представляет каждый блок обрабатываемых данных в виде двухмерного байтового массива размером 4x4, 4x6 или 4 х 8 в зависимости от установленной длины блока (допускается использование нескольких фиксированных размеров шифруемого блока информации). Далее на соответствующих этапах производятся преобразования либо над независимыми столбцами, либо над независимыми строками, либо вообще над отдельными байтами.

    Алгоритм AES состоит из определенного количества раундов (от 10 до 14 - это зависит от размера блока и длины ключа) и выполняет четыре преобразования:

    BS (ByteSub) - табличная замена каждого байта массива (рис. 6.5);

    SR (ShiftRow) - сдвиг строк массива (рис. 6.6). При этой операции первая строка остается без изменений, а остальные циклически побайтно сдвигаются влево на фиксированное число байт, зависящее от размера массива. Например, для массива размером 4x4 строки 2, 3 и 4 сдвигаются соответственно на 1, 2 и 3 байта;

    МС (MixColumn) - операция над независимыми столбцами массива (рис. 6.7), когда каждый столбец по определенному правилу умножается на фиксированную матрицу с(х);

    АК (AddRoundKey) - добавление ключа. Каждый бит массива складывается по модулю 2 с соответствующим битом ключа раунда, который в свою очередь определенным образом вычисляется из ключа шифрования (рис. 6.8).


    Рис. 6.5.

    для обработки каждого байта массива State

    Рис. 6.6. Преобразование SR (ShiftRow) циклически сдвигает три последних

    строки в массиве State

    d 2 j

    к оз

    к зз

    Рис. 6.8. Преобразование АК (AddRoundKey) производит сложение XOR каждого

    столбца массива State со словом из ключевого набора

    Эти преобразования воздействуют на массив State, который адресуется с помощью указателя "state". Преобразование AddRoundKey использует дополнительный указатель для адресации ключа раунда Round Key.

    Преобразование BS (ByteSub) является нелинейной байтовой подстановкой, которая воздействует независимо на каждый байт массива State, используя таблицу замен (подстановок) iS-box.

    В каждом раунде (с некоторыми исключениями) над шифруемыми данными поочередно выполняются перечисленные

    преобразования (рис. 6.9). Исключения касаются первого и последнего раундов: перед первым раундом дополнительно выполняется операция А К, а в последнем раунде отсутствует МС.

    Рис. 6.9.

    В результате последовательность операций при зашифровы-вании выглядит так:

    AK, {BS, SR, MC, АК} (повторяется R - 1 раз), BS, SR, АК.

    Количество раундов шифрования R в алгоритме AES переменное (10, 12 или 14 раундов) и зависит от размеров блока и ключа шифрования (для ключа также предусмотрено несколько фиксированных размеров).

    Расшифровывание выполняется с помощью следующих обратных операций. Выполняется обращение таблицы и табличная замена на инверсной таблице (относительно применяемой при зашифровывании). Обратная операция к SR - это циклический сдвиг строк вправо, а не влево. Обратная операция для МС - умножение по тем же правилам на другую матрицу d(x), удовлетворяющую условию с(х) d{x ) = 1. Добавление ключа АК является обратным самому себе, поскольку в нем используется только операция XOR. Эти обратные операции применяются при расшифровании в последовательности, обратной той, что использовалась при зашифровании.

    Все преобразования в шифре AES имеют строгое математическое обоснование. Сама структура и последовательность операций позволяют выполнять данный алгоритм эффективно как на 8-битных так и на 32-битных процессорах. В структуре алгоритма заложена возможность параллельного исполнения некоторых операций, что может поднять скорость шифрования на многопроцессорных рабочих станциях в 4 раза.

    Алгоритм AES стал новым стандартом шифрования данных благодаря ряду преимуществ перед другими алгоритмами. Прежде всего он обеспечивает высокую скорость шифрования на всех платформах: как при программной, так и при аппаратной реализации. Кроме того, требования к ресурсам для его работы минимальны, что важно при его использовании в устройствах, обладающих ограниченными вычислительными возможностями.

    Недостатком алгоритма AES можно считать лишь его нетрадиционную схему. Дело в том, что свойства алгоритмов, основанных на «сети Фейстеля», хорошо исследованы, a AES, в отличие от них, может содержать скрытые уязвимости, которые могут обнаружиться только по прошествии какого-то времени с момента начала его широкого распространения.

    Для шифрования данных применяются и другие симметричные блочные криптоалгоритмы.

    Основные режимы работы блочного симметричного

    алгоритма

    Большинство блочных симметричных криптоалгоритмов непосредственно преобразуют 64-битовый входной открытый текст в 64-битовый выходной шифрованный текст, однако данные редко ограничиваются 64 разрядами.

    Чтобы воспользоваться блочным симметричным алгоритмом для решения разнообразных криптографических задач, разработаны четыре рабочих режима:

    • электронная кодовая книга ЕС В (Electronic Code Book);
    • сцепление блоков шифра СВС (Cipher Block Chaining);
    • обратная связь по шифртексту CFB (Cipher Feed Back);
    • обратная связь по выходу OFB (Output Feed Back).

    Эти рабочие режимы первоначально были разработаны для блочного алгоритма DES, но в любом из этих режимов могут работать и другие блочные криптоалгоритмы.

    В наш компьютерный век человечество все больше отказывается от хранения информации в рукописном или печатном виде, предпочитая для документы. И если раньше крали просто бумаги или пергаменты, то сейчас взламывают именно электронную информацию. Сами же алгоритмы шифрования данных были известны еще с незапамятных времен. Многие цивилизации предпочитали зашифровывать свои уникальные знания, чтобы они могли достаться только человеку сведущему. Но давайте посмотрим, как все это отображается на нашем мире.

    Что собой представляет система шифрования данных?

    Для начала следует определиться с тем, что собой представляют криптографические системы вообще. Грубо говоря, это некий специальный алгоритм записи информации, который был бы понятен только определенному кругу людей.

    В этом смысле постороннему человеку все, что он видит, должно (а в принципе, так и есть) казаться бессмысленным набором символов. Прочесть такую последовательность сможет только тот, кто знает правила их расположения. В качестве самого простого примера можно определить алгоритм шифрования с написанием слов, скажем, задом наперед. Конечно, это самое примитивное, что можно придумать. Подразумевается, что если знать правила записи, восстановить исходный текст труда не составит.

    Зачем это нужно?

    Для чего все это придумывалось, наверное, объяснять не стоит. Посмотрите, ведь какие объемы знаний, оставшиеся от древних цивилизаций, сегодня находятся в зашифрованном виде. То ли древние не хотели, чтобы мы это узнали, то ли все это было сделано, чтобы человек смог ними воспользоваться только тогда, когда достигнет нужного уровня развития - пока что об этом можно только гадать.

    Впрочем, если говорить о сегодняшнем мире, защита информации становится одной из самых больших проблем. Посудите сами, ведь сколько имеется документов в тех же архивах, о которых правительства некоторых стран не хотели бы распространяться, сколько секретных разработок, сколько новых технологий. А ведь все это, по большому счету, и является первоочередной целью так называемых хакеров в классическом понимании этого термина.

    На ум приходит только одна фраза, ставшая классикой принципов деятельности Натана Ротшильда: «Кто владеет информацией, тот владеет миром». И именно поэтому информацию приходится защищать от посторонних глаз, дабы ей не воспользовался кто-то еще в своих корыстных целях.

    Криптография: точка отсчета

    Теперь, прежде чем рассматривать саму структуру, которую имеет любой алгоритм шифрования, немного окунемся в историю, в те далекие времена, когда эта наука только зарождалась.

    Считается, что искусство сокрытия данных активно начало развиваться несколько тысячелетий назад до нашей эры. Первенство приписывают древним шумерам, царю Соломону и египетским жрецам. Только много позже появились те же рунические знаки и символы, им подобные. Но вот что интересно: иногда алгоритм шифрования текстов (а в то время шифровались именно они) был таков, что в той же один символ мог означать не только одну букву, но и целое слово, понятие или даже предложение. Из-за этого расшифровка таких текстов даже при наличии современных криптографических систем, позволяющих восстановить исходный вид любого текста, становится абсолютно невозможной. Если говорить современным языком, это достаточно продвинутые, как принято сейчас выражаться, симметричные алгоритмы шифрования. На них остановимся отдельно.

    Современный мир: виды алгоритмов шифрования

    Что касается защиты конфиденциальных данных в современно мире, отдельно стоит остановиться еще на тех временах, когда компьютеры были человечеству неизвестны. Не говоря уже о том, сколько бумаги перевели алхимики или те же тамплиеры, пытаясь скрыть истинные тексты об известных им знаниях, стоит вспомнить, что со времени возникновения связи проблема только усугубилась.

    И тут, пожалуй, самым знаменитым устройством можно назвать немецкую шифровальную машину времен Второй мировой под названием «Энигма», что в переводе с английского означает «загадка». Опять же, это пример того, как используются симметричные алгоритмы шифрования, суть которых состоит в том, что шифровщик и дешифровальщик знают ключ (алгоритм), изначально примененный для сокрытия данных.

    Сегодня такие криптосистемы используются повсеместно. Самым ярким примером можно считать, скажем, алгоритм шифрования AES256, являющийся международным стандартом. С точки зрения компьютерной терминологии, он позволяет использовать ключ длиной 256 бит. Вообще современные алгоритмы шифрования достаточно разнообразны, а разделить их условно можно на два больших класса: симметричные и асимметричные. Они, в зависимости от области назначения, сегодня применяются очень широко. И выбор алгоритма шифрования напрямую зависит от поставленных задач и метода восстановления информации в исходном виде. Но в чем же состоит разница между ними?

    Симметричные и асимметричные алгоритмы шифрования: в чем разница

    Теперь посмотрим, какое же кардинальное различие между такими системами, и на каких принципах строится их применение на практике. Как уже понятно, алгоритмы шифрования бывают связаны с геометрическими понятиями симметрии и асимметрии. Что это значит, сейчас и будет выяснено.

    Симметричный алгоритм шифрования DES, разработанный еще в 1977 году, подразумевает наличие единого ключа, который, предположительно, известен двум заинтересованным сторонам. Зная такой ключ, нетрудно применить его на практике, чтобы прочитать тот же бессмысленный набор символов, приведя его, так сказать, в читабельный вид.

    А что представляют собой асимметричные алгоритмы шифрования? Здесь применяются два ключа, то есть для кодирования исходной информации использует один, для расшифровки содержимого - другой, причем совершенно необязательно, чтобы они совпадали или одновременно находились у кодирующей и декодирующей стороны. Для каждой из них достаточно одного. Таким образом, в очень высокой степени исключается попадание обоих ключей в третьи руки. Однако, исходя из современной ситуации, для многих злоумышленников кражи такого типа особо проблемой и не являются. Другое дело - поиск именно того ключа (грубо говоря, пароля), который подойдет для расшифровки данных. А тут вариантов может быть столько, что даже самый современный компьютер будет обрабатывать их в течение нескольких десятков лет. Как было заявлено, ни одна из имеющихся в мире компьютерных систем взломать доступ к нему и получить то, что называется «прослушкой», не может и не сможет в течение ближайших десятилетий.

    Наиболее известные и часто применяемые алгоритмы шифрования

    Но вернемся в мир компьютерный. Что на сегодня предлагают основные алгоритмы шифрования, предназначенные для защиты информации на современном этапе развития компьютерной и мобильной техники?

    В большинстве стран стандартом де-факто является криптографическая система AES на основе 128-битного ключа. Однако параллельно с ней иногда используется и алгоритм который хоть и относится к шифрованию с использованием открытого (публичного) ключа, тем не менее является одним из самых надежных. Это, кстати, доказано всеми ведущими специалистами, поскольку сама система определяется не только степенью шифрования данных, но и сохранением целостности информации. Что касается ранних разработок, к коим относится алгоритм шифрования DES, то он безнадежно устарел, а попытки его замены начали проводиться еще в 1997 году. Вот тогда-то на его основе и возник новый расширенный (Advanced) стандарт (сначала с ключом 128 бит, потом - с ключом 256 бит).

    Шифрование RSA

    Теперь остановимся на технологии RSA которая относится к системе асимметричного шифрования. Предположим, один абонент отправляет другому информацию, зашифрованную при помощи этого алгоритма.

    Для шифрования берутся два достаточно больших числа X и Y, после чего вычисляется их произведение Z, называемое модулем. Далее выбирается некое постороннее число A, удовлетворяющее условию: 1< A < (X - 1) * (Y - 1). Оно обязательно должно быть простым, то есть не иметь общих делителей с произведением (X - 1) * (Y - 1), равным Z. Затем происходит вычисление числа B, но только так, что (A * B - 1) делится на (X - 1) * (Y - 1). В данном примере A - открытый показатель, B - секретный показатель, (Z; A) - открытый ключ, (Z; B) - секретный ключ.

    Что происходит при пересылке? Отправитель создает зашифрованный текст, обозначенный как F, с начальным сообщением M, после чего следует A и умножение на модуль Z: F = M**A*(mod Z). Получателю остается вычислить несложный пример: M = F**B*(mod Z). Грубо говоря, все эти действия сводятся исключительно к возведению в степень. По тому же принципу работает и вариант с создание цифровой подписи, но уравнения тут несколько сложнее. Чтобы не забивать пользователю голову алгеброй, такой материал приводиться не будет.

    Что же касается взлома, то алгоритм шифрования RSA ставит перед злоумышленником практически нерешаемую задачу: вычислить ключ B. Это теоретически можно было бы сделать с применением доступных средств факторинга (разложением на сомножители исходных чисел X и Y), однако на сегодняшний день таких средств нет, поэтому сама задача становится не то что трудной - она вообще невыполнима.

    Шифрование DES

    Перед нами еще один, в прошлом достаточно эффективный алгоритм шифрования с максимальной длиной блока 64 бита (символа), из которой значащими являются только 56. Как уже было сказано выше, эта методика уже устарела, хотя достаточно долго продержалась в качестве стандарта криптосистем, применяемых в США даже для оборонной промышленности.

    Суть его симметричного шифрования заключается в том, что для этого применяется некая последовательность из 48 бит. При этом для операций используется 16 циклов из выборки ключей в 48 бит. Но! Все циклы по принципу действия аналогичны, поэтому на данный момент вычислить искомый ключ труда не составляет. К примеру, один из самых мощных компьютеров в США стоимостью более миллиона долларов «ломает» шифрование в течение примерно трех с половиной часов. Для машин рангом ниже на то, чтобы вычислить даже последовательность в максимальном ее проявлении, требуется не более 20 часов.

    Шифрование AES

    Наконец, перед нами самая распространенная и, как считалось до недавнего времени, неуязвимая система - алгоритм шифрования AES. Он сегодня представлен в трех модификациях - AES128, AES192 и AES256. Первый вариант применяется больше для обеспечения информационной безопасности мобильных устройств, второй задействован на более высоком уровне. Как стандарт, эта система была официально внедрена в 2002 году, причем сразу же ее поддержка была заявлена со стороны корпорации Intel, производящей процессорные чипы.

    Суть ее, в отличие от любой другой симметричной системы шифрования, сводится к вычислениям на основе полиноминального представления кодов и операций вычисления с двумерными массивами. Как утверждает правительство Соединенных Штатов, для взлома ключа длиной 128 бит дешифратору, пусть даже самому современному, потребуется порядка 149 триллионов лет. Позволим себе не согласиться с таким компетентным источником. Компьютерная техника за последние сто лет сделала скачок, соизмеримый с так что особо обольщаться не стоит, тем более что сегодня, как оказалось, существуют системы шифрования и покруче, чем те, которые США объявили совершенно стойкими ко взлому.

    Проблемы с вирусами и дешифровкой

    Конечно же, речь идет о вирусах. В последнее время появились довольно специфичные вирусы-вымогатели, которые шифруют все содержимое жесткого диска и логических разделов на зараженном компьютере, после чего жертва получает письмо с уведомлением о том, что все файлы зашифрованы, а расшифровать их может только указанный источник после оплаты кругленькой суммы.

    При этом, что самое важное, указывается, что при шифровании данных была применена система AES1024, то есть длина ключа в четыре раза больше ныне существующей AES256, а количество вариантов при поиске соответствующего дешифратора возрастает просто неимоверно.

    А если исходить из заявления правительства США о сроке, отводимом для дешифрования ключа длиной 128 бит, то что можно сказать о времени, которое потребуется на поиск решения для случая с ключом и его вариантами длиной 1024 бита? Вот тут-то США и прокололись. Они ведь считали, что их система компьютерной криптографии совершенна. Увы, нашлись какие-то спецы (судя по всему, на постсоветском пространстве), которые превзошли «незыблемые» американские постулаты по всем параметрам.

    При всем этом даже ведущие разработчики антивирусного ПО, в том числе «Лаборатория Касперского», специалисты, создавшие «Доктора Веба», корпорация ESET и многие другие мировые лидеры просто разводят руками, дескать, на расшифровку такого алгоритма попросту нет средств, умалчивая при этом о том, что и времени не хватит. Конечно, при обращении в службу поддержки предлагается отправить зашифрованный файл и, если есть, желательно его оригинал - в том виде, в каком он был до начала шифрования. Увы, даже сравнительный анализ пока не дал ощутимых результатов.

    Мир, которого мы не знаем

    Да что там говорить, если мы гонимся за будущим, не имея возможности расшифровать прошлое. Если посмотреть на мир нашего тысячелетия, можно заметить, что тот же римский император Гай Юлий Цезарь в некоторых своих посланиях использовал симметричные алгоритмы шифрования. Ну а если взглянуть на Леонардо да Винчи, так вообще становится как-то не по себе от одного осознания того, что в области криптографии этот человек, чья жизнь покрыта неким флером тайны, на века превзошел свою современность.

    До сих пор многим не дает покоя так называемая «улыбка Джоконды», в которой есть что-то такое притягательное, чего современный человек понять не способен. Кстати сказать, на картине относительно недавно были найдены некие символы (в глазу, на платье и т. д.), которые явно свидетельствуют о том, что во всем этом содержится какая-то зашифрованная великим гением информация, которую сегодня, увы, извлечь мы не в состоянии. А ведь мы даже не упомянули о разного рода масштабных конструкциях, которые способны были перевернуть понимание физики того времени.

    Конечно, некоторые умы склоняются исключительно к тому, что в большинстве случаев было использовано так называемое «золотое сечение», однако и оно не дает ключа ко всему тому огромному хранилищу знаний, которое, как считается, либо нам непонятно, либо потеряно навеки. По всей видимости, криптографам предстоит проделать еще неимоверную кучу работы, чтобы понять, что современные алгоритмы шифрования порой не идут ни в какое сравнение с наработками древних цивилизаций. К тому же, если сегодня существуют общепринятые принципы защиты информации, то те, которые использовались в древности, к сожалению, нам совершенно недоступны и непонятны.

    И еще одно. Существует негласное мнение, что большинство древних текстов невозможно перевести только потому, что ключи к их дешифровке тщательно охраняются тайными обществами вроде масонов, иллюминатов и т. д. Даже тамплиеры оставили тут свой след. Что уж говорить о том, что до сих пор абсолютно недоступной остается библиотека Ватикана? Не там ли хранятся основные ключи к пониманию древности? Многие специалисты склоняются именно к этой версии, считая, что Ватикан намеренно утаивает эту информацию от общества. Так это или нет, пока не знает никто. Но одно можно утверждать совершенно точно - древние системы криптографии ни в чем не уступали (а может, и превосходили) тем, что используются в современном компьютерном мире.

    Вместо послесловия

    Напоследок стоит сказать, что здесь были рассмотрены далеко не все аспекты, связанные с нынешними криптографическими системами и методиками, которые они используют. Дело в том, что в большинстве случаев пришлось бы приводить сложные математические формулы и представлять вычисления, от которых у большинства пользователей просто голова кругом пойдет. Достаточно взглянуть на пример с описанием алгоритма RSA, чтобы сообразить, что все остальное будет выглядеть намного сложнее.

    Тут главное - понять и вникнуть, так сказать, в суть вопроса. Ну а если говорить о том, что представляют собой современные системы, предлагающие хранить конфиденциальную информацию таким образом, чтобы она была доступна ограниченному кругу пользователей, здесь выбор невелик. Несмотря на наличие множества криптографических систем, те же алгоритмы RSA и DES явно проигрывают специфике AES. Впрочем, и большинство современных приложений, разработанных для совершенно разнящихся между собой операционных систем, используют именно AES (естественно, в зависимости от области применения и устройства). Но вот «несанкционированная» эволюция этой криптосистемы, мягко говоря, многих, особенно ее создателей, повергла в шок. Но в целом, исходя из того, что имеется на сегодняшний день, многим пользователям нетрудно будет понять, что такое криптографические системы шифрования данных, зачем они нужны и как работают.